Fall 2021, Math 596: Week 8 Problem Set
 Due: Thursday, October 21st, 2021
 Face Lattice Combinatorics

Discussion problems. The problems below should be worked on in class.
(D1) Associahedra. The goal of this problem is to build and draw a new 3-dimensional polytope.
(a) The associahedron A_{n} is a polytope whose vertices are in bijection with the ways of associating parenthesis when multiplying n elements. The polytope A_{4} (dimension 2) is depicted below. What is the "rule" for when two vertices are connected by an edge?

(b) List all associations of $a b c d e$, e.g. $a(b((c d) e))$ or $(a b)((c d) e)$. There are 14 total.
(c) Draw a graph whose vertices are the 14 expressions you found above, and where an edge is drawn between any two vertices that differ by moving parenthesis exactly one.
(d) Find a way to draw the above graph so that no edges cross.
(e) Using the above graph as a starting place, draw the associahedron A_{5}. Suggestions:

- Take your time and be methodical in your drawing. Patience is greatly rewarded.
- It may take several revisions to find a "satisfying" drawing, so don't be afraid to experiment and try some different things!
- There is no single "correct" answer here. Unlike most "common" shapes like the cube or octohedron, many different drawings are possible.
(D2) Permutohedra. An ordered set partition of n is a list B_{1}, \ldots, B_{r} of disjoint nonempty sets (called blocks) whose union equals $\{1,2, \ldots, n\}$. As an example,

$$
(\{2,4\},\{1,3,7\},\{5,6\}) \quad \text { (shorthand: } 24|137| 56)
$$

is an ordered set partition of $n=7$ with $r=3$ blocks. Within each block the order does not matter (since blocks are sets), but the order of the blocks themselves does.
Recall that the permutohedron $P_{n} \subseteq \mathbb{R}^{n}$ is the convex hull of all points whose coordinates are some reordering of $(1,2, \ldots, n)$. It turns out each nonempty face of P_{n} corresponds to an ordered set partition of $\{1,2, \ldots, n\}$. More specifically, if

$$
\left(B_{1}, \ldots, B_{r}\right) \longmapsto F,
$$

then a vertex $w=\left(w_{1}, \ldots, w_{n}\right) \in F$ if and only if $w_{i}<w_{j}$ whenever $i \in B_{k}$ and $j \in B_{k+1}$.
(a) Find all vertices in the face corresponding to each of the following.

$$
2|5| 1|3| 4 \quad 2|15| 3|4 \quad 124| 3 \quad 24|13| 5
$$

(b) Draw P_{2} and P_{3}, and next to each face write the corresponding ordered set partition.
(c) Determine when two ordered set partitions correspond to faces F and F^{\prime} with $F^{\prime} \subset F$.
(d) Determine how to identify $\operatorname{dim} F$ from the corresponding ordered set partition.
(e) The vertices on each edge of P_{3} coincide in one coordinate. Use this to obtain an inequality defining each facet of P_{3}.
Note: these form the H-description of P_{3} along with $x_{1}+x_{2}+x_{3}=6$.
(f) Each facet of P_{4} is either a hexagon or a square. What property of the corresponding ordered set partition determines which it is?
(g) Find an inequality defining each facet of P_{4}. Generalize to P_{n}.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Below is a picture of the 3-dimensional associahedron A_{5}, and the final page of this document depicts the face lattice of A_{5} (except for the empty face), where each face is represented by a collection of non-crossing diagonals of a hexagon. Your goal for this problem is to connect these depictions and explore the structure of the face lattice. Your answer should be a paragraph or two addressing the following (plus any other patterns you notice).

- When is one collection of non-crossing diagonals "above" another in the face lattice?
- Given a collection of non-crossing diagonals, what determines the dimension of the corresponding face?
- What determines which facets are square vs pentagonal? In higher dimensional associahedra, what will the different "types" of facets be?
- Each row of the face lattice is depicted with certain "clumps" (there are 5 in the bottom row, 5 in the middle row, and 3 in the top row). Why are these clumped as they are? What distinguishes each clump?
- Broadly speaking, how was the ordering (left to right) of faces chosen in each row of the face lattice?

(H2) Prove that any subset of the vertices of the d-simplex

$$
S_{d}=\operatorname{conv}\left\{0, e_{1}, \ldots, e_{d}\right\}
$$

is the V-description of a face of S_{d} (here, e_{i} denotes the i-th standard basis vector).
(H3) Find a formula for the number of ridges of the d-dimensional cube C_{d}.
(H4) Complete and write up the last part of Problem (D2).

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Locate a halfspace defining each face of the permutohedron P_{n}.

