Fall 2021, Math 596: Week 9 Problem Set
 Due: Thursday, October 28th, 2021
 Ehrhart Functions and Ehrhart Series

Discussion problems. The problems below should be worked on in class.
(D1) Computing Ehrhart series. Recall from lecture that if $P \subset \mathbb{R}^{d}$ is a polytope, then

$$
\operatorname{Ehr}_{P}(z)=\sum_{n \geq 0} L_{P}(n) z^{n}
$$

is the Ehrhart series of P.
(a) The cone over P, denoted cone (P), is the cone $C=\operatorname{span}_{\geq 0}(P \times\{1\}) \subset \mathbb{R}^{d+1}$. Identify which polytope the cone in Problem (P1) is the cone over.
(b) Express $\operatorname{Ehr}_{P}(z)$ in terms of $\sigma_{C}\left(z_{1}, \ldots, z_{d+1}\right)$.
(c) Fix integers $a<b$, and let $P=[a, b] \subset \mathbb{R}$, that is, the closed interval from a to b (this is a 1-dimensional polytope with vertices a and b). Using part (b), find the Ehrhart series of P in terms of a and b.
(d) Let $P=\operatorname{conv}\{(0,2),(1,0),(1,1)\}$. Draw $P, 2 P$, and $3 P$ on different sets of axes. Also draw the cross sections $x_{3}=1, x_{3}=2$, and $x_{3}=3$, respectively, of the fundamental parallelopiped of $C=\operatorname{cone}(P)$ (use a different color).
(e) Find $\operatorname{Ehr}_{P}(z)$ for the polytope P in the previous part using part (b).
(f) Find the Ehrhart series of the pentagon

$$
P=\operatorname{conv}\{(-1,-1),(1,-1),(-1,0),(1,0),(0,1)\}
$$

by triangulating and then using part (b). Use this to find a formula for the Ehrhart polynomial $L_{P}(t)$.
(g) Consider the rational polygon $P=\operatorname{conv}\left\{(0,0),\left(\frac{1}{2}, 0\right),\left(0, \frac{1}{2}\right)\right\}$. Using part (b), show

$$
\operatorname{Ehr}_{P}(z)=\frac{1+z}{\left(1-z^{2}\right)^{3}}
$$

Use this to find a formula for $L_{P}(t)$ (remember, this will be a quasipolynomial).
(D2) Ehrhart series of the cross polytope. Given a polytope $P=\operatorname{conv}\left\{v_{1}, \ldots, v_{k}\right\} \subset \mathbb{R}^{d}$, define

$$
\begin{aligned}
\operatorname{Pyr}(P) & =\operatorname{conv}\left\{\left(v_{1}, 0\right),\left(v_{2}, 0\right), \ldots,\left(v_{k}, 0\right), e_{d+1}\right\} \subset \mathbb{R}^{d+1} \quad \text { and } \\
\operatorname{Bipyr}(P) & =\operatorname{conv}\left\{\left(v_{1}, 0\right),\left(v_{2}, 0\right), \ldots,\left(v_{k}, 0\right), e_{d+1},-e_{d+1}\right\} \subset \mathbb{R}^{d+1}
\end{aligned}
$$

the pyramid and bipyramid over P, respectively (each lives in one dimension more than P).
(a) Let $P=[-1,1] \subset \mathbb{R}$. Draw $P, \operatorname{Pyr}(P)$ and $\operatorname{Bipyr}(P)$.
(b) Let $P=\operatorname{conv}\{(1,0),(-1,0),(0,1),(0,-1)\}$. Draw $P, \operatorname{Pyr}(P)$ and $\operatorname{Bipyr}(P)$.
(c) Find a formula relating $L_{\operatorname{Pyr}(P)}(3)$ in terms of $L_{P}(1), L_{P}(2)$, and $L_{P}(3)$.
(d) Let $A(z)=\sum_{n \geq 0} a_{n} z^{n}$ and $B(z)=\sum_{n \geq 0} b_{n} z^{n}$, and suppose each $b_{n}=a_{0}+\cdots+a_{n}$. Find an equation relating $A(z)$ and $B(z)$ that uses no sigma-sums.
(e) Find a formula for $\operatorname{Ehr}_{\operatorname{Pyr}(P)}(z)$ in terms of $\operatorname{Ehr}_{P}(z)$ (again involving no sigma-sums).
(f) Find a sigma-sum free equation relating the Ehrhart series of $P, \operatorname{Pyr}(P)$, and $\operatorname{Bipyr}(P)$. Use this to obtain a formula for $\operatorname{Ehr}_{\operatorname{Bipyr}(P)}(z)$ in terms of $\operatorname{Ehr}_{P}(z)$.
(g) Find a formula for the Ehrhart series of the d-dimensional cross polytope

$$
P_{d}=\operatorname{conv}\left\{e_{1},-e_{1}, e_{2},-e_{2}, \ldots, e_{d},-e_{d}\right\} \subset \mathbb{R}^{d}
$$

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Find the Ehrhart series of the 2-dimensional permutohedron

$$
P_{3}=\{(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)\} .
$$

Hint: locate a projection of P_{3} into \mathbb{R}^{2} that preserves the Ehrhart function, then triangulate.
(H2) Suppose $h \in \mathbb{Z}_{\geq 1}$, and consider

$$
T=\{(0,0,0),(1,0,0),(0,1,0),(1,1, h)\}
$$

known as Reeve's tetrahedron.
(a) Find $\operatorname{Ehr}_{T}(z)$, the Ehrhart series of Reeve's tetrahedron (your answer will have h 's).
(b) Use part (a) to find a formula for $L_{T}(t)$, the Ehrhart function of T.
(H3) Fix two polytopes $P \subset \mathbb{R}^{n}$ and $Q \subset \mathbb{R}^{m}$, and define

$$
P \times Q=\left\{\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}\right):\left(p_{1}, \ldots, p_{n}\right) \in P,\left(q_{1}, \ldots, q_{m}\right) \in Q\right\} \subset \mathbb{R}^{n+m}
$$

(a) Prove $P \times Q$ is a polytope.
(b) Express $L_{P \times Q}(t)$ in terms of $L_{P}(t)$ and $L_{Q}(t)$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Fix $a, b \in \mathbb{Z}_{\geq 1}$ with $\operatorname{gcd}(a, b)=1$, and consider the rhombus

$$
P=\{(x, y): a|x|+b|y| \leq a b\}
$$

Find $L_{P}(t)$ in terms of a, b, and t.

