Fall 2021, Math 596: Week 11 Problem Set Catch-up Week

Discussion problems. The problems below should be worked on in class.
(D1) Practice with Ehrhart series. Consider the polytope

$$
P=\operatorname{conv}\{(1,0,0),(0,1,0),(0,-1,-1),(0,0,1),(0,0,-1)\}
$$

(a) Triangulate P using 2 simplices. Use cones over simplices to obtain $\operatorname{Ehr}_{P}(z)$.

Hint: what is the issue with points with negative entries? How can we handle this?
(b) Find the leading coefficient of $L_{P}(t)$.

Hint: this can be done without finding $L_{P}(t)$ in its entirety!
(D2) Practice with V - and H-descriptions. Refer to the polytope P from Problem (D1).
(a) Determine, using the definition of convex hull, which points in the convex hull above can be omitted. Conclude you have obtained the irredundant V-description of P.
(b) Find the irredundant H-descriptions of P. Identify a facet for each inequality in your H-description (thus ensuring irredundancy).
(c) Verify from first principles that your V - and H-descriptions are indeed equivalent.
(D3) Practice with power series manipulation. Consider the series

$$
\sum_{n \geq 0}\left(n^{3}+2 n^{2}+2 n+1\right) z^{n}=\frac{Q(z)}{(1-z)^{d+1}} \quad \text { and } \quad \sum_{n \geq 0} f(n) z^{n}=\frac{1+3 z+4 z^{2}}{(1-z)^{3}}
$$

(a) Find $Q(z)$ and d.
(b) Find a formula for $f(n)$.
(c) Find a formula for $f(n)$ if the denominator on the right hand side were instead $\left(1-z^{2}\right)^{3}$.
(D4) Ehrhart series of the cross polytope. Given a polytope $P=\operatorname{conv}\left\{v_{1}, \ldots, v_{k}\right\} \subset \mathbb{R}^{d}$ with the origin in its interior, define

$$
\begin{aligned}
\operatorname{Pyr}(P) & =\operatorname{conv}\left\{\left(v_{1}, 0\right),\left(v_{2}, 0\right), \ldots,\left(v_{k}, 0\right), e_{d+1}\right\} \subset \mathbb{R}^{d+1} \quad \text { and } \\
\operatorname{Bipyr}(P) & =\operatorname{conv}\left\{\left(v_{1}, 0\right),\left(v_{2}, 0\right), \ldots,\left(v_{k}, 0\right), e_{d+1},-e_{d+1}\right\} \subset \mathbb{R}^{d+1}
\end{aligned}
$$

the pyramid and bipyramid over P, respectively (each lives in one dimension more than P).
(a) Let $P=[-1,1] \subset \mathbb{R}$. Draw $P, \operatorname{Pyr}(P)$ and $\operatorname{Bipyr}(P)$.
(b) Let $P=\operatorname{conv}\{(1,0),(-1,0),(0,1),(0,-1)\}$. Draw $P, \operatorname{Pyr}(P)$ and $\operatorname{Bipyr}(P)$.
(c) Find a general formula for $L_{\operatorname{Pyr}(P)}(3)$ in terms of $L_{P}(1), L_{P}(2)$, and $L_{P}(3)$.
(d) Let $A(z)=\sum_{n \geq 0} a_{n} z^{n}$ and $B(z)=\sum_{n \geq 0} b_{n} z^{n}$, and suppose each $b_{n}=a_{0}+\cdots+a_{n}$. Show that $(1-\bar{z}) B(z)=A(z)$.
(e) Find a formula for $\operatorname{Ehr}_{\operatorname{Pyr}(P)}(z)$ in terms of $\operatorname{Ehr}_{P}(z)$ involving no sigma-sums.
(f) Find a sigma-sum free equation relating the Ehrhart series of $P, \operatorname{Pyr}(P)$, and $\operatorname{Bipyr}(P)$. Use this to obtain a formula for $\operatorname{Ehr}_{\operatorname{Bipyr}(P)}(z)$ in terms of $\operatorname{Ehr}_{P}(z)$.
(g) Find a formula for the Ehrhart series of the d-dimensional cross polytope

$$
P_{d}=\operatorname{conv}\left\{e_{1},-e_{1}, e_{2},-e_{2}, \ldots, e_{d},-e_{d}\right\} \subset \mathbb{R}^{d}
$$

(h) Why do we require that P have the origin in its interior?

