Fall 2021, Math 596: Project Topics

The goal of each project is to learn about a topic not discussed in class. Throughout the

semester, the following will be expected.

e Choose a topic. Please speak with me before making your decision, to ensure it is an
appropriate level and so that we can narrow down a reasonable set of goals. You should
choose a topic (and have it approved) no later than Friday, November 12th.

e Begin reading the agreed-upon background material. Plan to meet at least twice with
me throughout the rest of the semester, to ensure that you are on track.

e Write (in IXTEX) a paper aimed at introducing your topic to fellow students, contain-
ing ample examples and explanations in addition to any theorems and proofs you give.
Your writing should convey that you understand the intricacies of any proofs presented.
Keep the following deadlines in mind as you proceed.

— A rough draft of the paper will be due Thursday, December 2nd (one week before
the last day of class). This will be peer reviewed by a fellow student.

— The final paper will be due on Tuesday, December 14th (our “final exam” day).

e Graduate students only: give a 10-15 minute presentation introducing the main ideas of
your topic. Presentations will take place during the final exam slot at the semester’s end.
You should keep in mind your target audience and available time when deciding what and
how to present.

Note: although the presentation is optional, everyone is encouraged to present and should
strongly consider doing so. If there is sufficient interest, we can spend some time during
the last week of classes on presentations as well.

e Your final grade on the project will be determined by the content, quality, and completeness
of your final writeup (and, for graduate students, on the quality of the presentation).

Given below are several project ideas. Many of the listed sources contain more material

than is necessary for the project, so be sure to meet with me so we can set reasonable project
goals. T am also open to projects not listed here, but you must run them by me before making
a decision. Don’t be afraid to ask questions at any point during the project!

Polytopes

(1)

Inside-out polytopes. A graph is a collection of dots (called vertices) and lines between them
(called edges). A proper coloring of a graph is a way to color the vertices so that no two
vertices on the same edge are the same color. The number of proper colorings on a graph G
using n colors is known as the chromatic polynomial of G, and (as the name suggests) turns
out to be a polynomial in n whose degree equals the number of vertices of G.

Chromatic polynomials of graphs can be studied using the Ehrhart functions of what are
called inside-out polytopes, which are polytopes from which the intersections of certain hy-
perplanes through the middle have been removed.

Source: Combinatorial reciprocity theorems (M. Beck, R. Sanyal), Chapters 1 and 7.

Flow polytopes. A directed graph is a collection of dots (called vertices) and arrow between
them (called edges). A flow on a directed graph is a way to label each edge of G by an
element of Z (or Z,) so that at each vertex v, the sum of the edges entering v equals the
sum of the edges leaving v (i.e. the in flow at each vertex equals the out flow). The flows
on a given directed graph can be counted using a certain family of polytopes, whose integer
points each coincide with a flow on G.

Source: Combinatorial reciprocity theorems (M. Beck, R. Sanyal), Chapters 1 and 7.



3)

Order polytopes. A partially ordered set (or poset for short) is a set P and a reflexive, anti-
symmetric, and transitive partial ordering < (that is, some elements of P are incomparable
under =<). One of the “standard” examples is a set P of positive integers (say, {1,...,10})
under the partial order a < b if a | b. Indeed, divisibility is reflexive (a | a), antisymmetric
(a]band b | aimplies a = b) and transitive (a | b and b | ¢ implies a | ¢), but some integers
are incomparable (e.g. 416 and 61 4).

An order polytope is a polytope O(P) constructed from a given finite poset P, and naturally
encodes many properties of P. For example, the Ehrhart function of O(P) counts the number
of order preserving functions on P.

Source: Combinatorial reciprocity theorems (M. Beck, R. Sanyal), Chapters 1, 2, and 6.

0/1 polytopes. A 0/1 polytope is a polytope in which all vertex coordinates are either 0 or 1.
Families of 0/1 polytopes can encode a wide variety of different combinatorics problems, and
are often used to demonstrate “extremely bad behavior” that polytopes can exhibit.

Source: Lectures on 0/1 polytopes (G. Ziegler).

Transportation polytopes. Frequently arising in optimization applications, transportation
polytopes are a family of polytopes that play a central role in studying the traveling salesman
problem (one of the classic computation problems in P vs. NP).

Source: Combinatorics and Geometry of Transportation Polytopes: An Update (J. De Loera,
E. Kim).

Counting magic squares. A magic square is an n X n grid of integers in which all row and
column sums coincide. Counting the number of possible magic squares of a given size and
row/column sum can be achieved using the Ehrhart functions of certain polytopes, wherein
each integer point corresponds to a particular magic square.

Source: Computing the continuous discretely (M. Beck, S. Robins), Chapter 6.

Realizing associahdra. We saw the associahedron A; C R?, and hinted at a larger family of
polytopes A,, whose faces corresponded to (i) ways of drawing non-crossing diagonals in an
(n + 3)-polygon, and (ii) ways of adding parenthesis to a non-associative product of n + 1
elements. Finding a “nice” choice of vertices for A,, turns out to be much harder than for the
permutohedron, but the first successful attempt at doing so unlocked deep understanding
about the structure of triangulations of polytopes.

Source: Lectures on Polytopes (G. Ziegler), Chapter 9.

The Shi arrangement and parking functions. A collection of hyperplanes Hy, ..., H;, C R¢
can be viewed as cutting space into finitely many “regions” (i.e, the connected components
of R4\ (Hy U---Hy)). The Shi arrangement is a particular arrangement of hyperplanes
whose regions have especially nice combinatorial structure.

Source: Parking functions, Shi arrangements, and mized graphs (M. Beck, A. Berrizbeitia,
M. Dairyko, C. Rodriguez, A. Ruiz, S. Veeneman).

The Dehn-Sommeruville relations. The face numbers fo, f1,..., fa of a polytope P count the
number of faces of P of dimension 0,1,...,d, respectively. If P is simple (meaning every
vertex of P lies in exactly d edges, the smallest number geometrically possible), then the
face numbers of P satisfy a collection of equations called the Dehn-Sommerville relations.
These relations arise frequently in the study of Ehrhart functions of simple polytopes.

Source: Computing the continuous discretely (M. Beck, S. Robins), Chapter 5.



(10) The Hirsch conjecture. One of the most famous and longstanding open problems in the
study of polytopes, the Hirsch conjecture (1957) proposed a bound on the possible distances
between vertices in the 1-skeletons of polytopes. Since the first counterexample was dis-
covered in 2012 (with a whopping dimension of 43), several smaller counterexamples have
been located, though few (if any) are small enough to write down by hand. Although the
conjecture is officially settled, many related questions still remain unanswered.

Source: Who solved the Hirsch conjecture? (G. Ziegler).

Generating functions

(11) Multivariate quasipolynomials. We will see that a function f : Z>¢ — R is quasipolynomial
if it is a polynomial with periodic coefficients (or, equivalently, that its generating function
Y om0 f(n)z™ is rational in z with sufficiently nice numerator and denominator). What
about multivariate functions g : Zio — R, with d integer inputs instead of just one? What
does it mean for g to be a quasipolynomial? The answer to this question turns out to be
somewhat more complicated than “a polynomial with periodic coefficients” but has surprising
connections to geometry and cones in Z2.

Source: Length functions determined by killing powers of several ideals in a local ring (B. Fields),
Chapter 2.

(12) Generating functions as a counting tool. Our use of generating functions in this class (to
concisely express certain quasipolynomial functions) only scratches the surface of their utility.
Generating functions are used heavily in combinatorics to give concise answers to counting
questions when closed forms are difficult or impossible. The techniques for doing so yield an
elegant high-level approach to combinatorics problems and some surprisingly slick proofs.

Source: A walk through combinatorics (3rd edition) (M. Béna), Chapter 8.

Semigroups

(13) The Kunz polyhdedron. A numerical semigroup is a subset S C Zsq that is closed under
addition whose complement in Z>g is finite. For each m > 3, there is a polyhedron P,
shaped like a pointed cone translated slightly from the origin, whose integer points each
correspond to a numerical semigroup containing m. The faces of these polyhedra naturally
divide the collection of all numerical semigroups containing m (an infinite collection) into
finitely many “classes” with similar algebraic structure.

Source: Wilf’s conjecture in fized multiplicity (W. Bruns, P. Garcia-Sanchez, C. O’Neill,
D. Wilbourne).

(14) Counting oversemigroups. A numerical semigroup is a subset S C Z>¢ that is closed under
addition whose complement in Z> is finite. A numerical semigroup 7" is an oversemigroup
of a numerical semigroup S if T O S. Every numerical semigroup has only finitely many
oversemigroups since there are only finitely many gaps to “fill in”. Recently, Ehrhart func-
tions were used in counting the number of oversemigroups by constructing certain polytopes
in which each integer point corresponds to an oversemigroup of the given semigroup.

Source: On the number of numerical semigroups containing two coprime integers (M. Hellus,
R. Waldi).

Advanced algebra topics

(15) Hilbert functions. Hilbert functions, which arise in the study of polynomial ideals, provide a
natural bridge between commutative algebra and combinatorics, and are closely related to
much of the content we will see in this course. Hilbert’s theorem states that certain Hilbert



functions are eventually quasipolynomial (this is in many ways a “3rd viewpoint” alongside
polytopes and generating functions). Among other things, Hilbert’s theorem can be used to
give an algebraic proof of Ehrhart’s theorem for integral/rational polytopes.

Source: Combinatorial commutative algebra (E. Miller, B. Sturmfels), Chapter 8.

Note: This project requires at least one semester of abstract algebra, but preferably two.
At the very least, familiarity with ideals, polynomial rings, and quotient rings is essential.

Binomial ideals. An ideal I in the polynomial ring Q[z1, ..., z4] is a binomial ideal if it can
be generated by differences of monomials. Binomial ideals provide a natural bridge between
commutative algebra, semigroups, and polyhedral cones, and are hiding in the background
throughout much of the content in this course (in some ways, this is a “4th viewpoint” along-
side Hilbert functions, polytopes, and generating functions). For instance, while we may view
subtraction in the numerator of a rational generating function as “inclusion-exclusion”, from
the semigroups viewpoint, these differences encode relations between semigroup generators.

Source: Combinatorial commutative algebra (E. Miller, B. Sturmfels), Chapter 7.

Note: This project requires at least one semester of abstract algebra, but preferably two.
At the very least, familiarity with ideals, polynomial rings, and quotient rings is essential.

Applications

(17)

Voting theory. One of many applications of Ehrhart theory is in the analysis and comparison
of certain voting methods, wherein the coordinates of each integer point represent the number
of votes some candidate received, and the possible voting totals, as well as the possible
election outcomes, can be viewed as linear inequalities.

Source: On Ehrhart polynomials and probability calculations in voting theory (D. Lepelley,
A. Louichi, H. Smaoui).

Simplexr method. Central to linear programming, operations research, and combinatorial
optimization, the simplex method is an algorithm for finding an optimal solution for a system
of linear inequalities. It’s generality and efficiency enable its use in countless applications.

Source: Introduction to the simplex method (T. Hu and A. Kahng).



