Fall 2021, Math 620: Week 1 Problem Set Due: Thursday, September 2nd, 2021 Introduction to Groups

Discussion problems. The problems below should be worked on in class.

- (D1) Checking group axioms. Determine which (if any) of the group axioms are violated by each of the following sets G under the given operation *. Brief justifications are sufficient for this problem (no formal proof is required).
 - (a) $G = \mathbb{Z}; a * b = a b.$
 - (b) $G = \mathbb{Z}_{>0}; a * b = a + b.$
 - (c) $G = \mathbb{Z}_{10}$; a * b = ab (i.e. standard multiplication in \mathbb{Z}_{10}).
 - (d) $G = \{1, 3, 7, 9\} \subset \mathbb{Z}_{10}; a * b = ab$ (i.e. standard multiplication in \mathbb{Z}_{10}).
 - (e) $G = (\mathbb{R} \times \mathbb{R}) \setminus \{(0,0)\}; (a,b) * (c,d) = (ac,bd).$
- (D2) Group element orders. For a group (G, \cdot) and $a \in G$, the order of a, denoted |a|, is the smallest $n \in \mathbb{Z}_{>1}$ such that $a^n = e$, or $|a| = \infty$ is no such n exists.
 - (a) Find the order of each element of D_4 . Do the same for \mathbb{Z} .
 - (b) Fix a group (G, ·) and an element a ∈ G with |a| = n. After copying it onto the board in its entirety, locate and correct an error in the following proof that a^k = e if and only if n | k.

Proof. Suppose $a^k = e$, and write k = qn + r for some $q, r \in \mathbb{Z}$ with $0 \le r < n$. Then $e = a^k = (a^n)^q a^r = e^q a^r = a^r$,

so by the minimality of n, we must have r = 0. As such, $n \mid k$.

.

- (c) Prove that if G is finite and $a \in G$, then |a| is finite.
- (D3) Isomorphisms. We say two groups (G, \cdot) and (G', \cdot) are isomorphic if there exists a bijection $\varphi: G \to G'$ such that $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$ for all $a, b \in G$. Intuitively, isomorphic groups have identical algebraic structure, and the elements have just been "relabeled".
 - (a) In the expression " $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$ " above, identify the group each " \cdot " occurs in.
 - (b) Argue that $(2\mathbb{Z}, +) \cong (\mathbb{Z}, +)$.
 - (c) A group (G, \cdot) is called *cyclic* if $G = \{a^r : r \in \mathbb{Z}\}$ for some $a \in G$. The goal of this problem is to prove that up to isomorphism, $(\mathbb{Z}_n, +)$ are the only finite cyclic groups.
 - (i) Argue that each $(\mathbb{Z}_n, +)$ is cyclic. How many choices are there for "a" in \mathbb{Z}_8 ?
 - (ii) The remainder of this question is to prove that if (G, \cdot) is cyclic and |G| = n, then $G \cong (\mathbb{Z}_n, +)$.

Since G is cyclic, and fix $a \in G$ with $G = \{a^r : r \in \mathbb{Z}\}$. Consider the map

$$\varphi: G \longrightarrow \mathbb{Z}_n \\ a^r \longmapsto [r]_n$$

Before we do **anything** we must ensure this map is "well-defined" (that is to say, the rule used to define φ doesn't attempt to send some element of the domain to two different elements of the codomain). Discuss what the potential issue is with this map. Then, prove that φ is indeed well-defined using (D2)(b). Hint: what is the order of a?

- (iii) Now, prove that φ is an isomorphism.
- (d) Give a sketch of a proof that if G is infinite and cyclic then $G \cong \mathbb{Z}$.

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Determine whether each of the following sets G form a group under the given operation *. Prove your assertions.
 - (a) $G = \{1, 3, 5, 7, 9\} \subset \mathbb{Z}_{10}; a * b = ab$ (i.e. standard multiplication in \mathbb{Z}_{10}).
 - (b) $G = \mathbb{R}; a * b = a + b + 3.$
 - (c) G is the set of nonzero real numbers; $a * b = |a| \cdot b$.
- (H2) Suppose G is a group and $a, b \in G$. Using **only group axioms**, prove $(ab)^{-1} = b^{-1}a^{-1}$. Be especially careful with associativity! In particular, any triple products xyz should be written as either (xy)z or x(yz).
- (H3) Identify a subgroup of $GL_2(\mathbb{R})$ isomorphic to D_4 . Identify a subgroup isomorphic to \mathbb{Z}_6 .
- (H4) Determine whether each of the following statements is true or false. Prove your assertions.
 - (a) Every infinite group G has at least one proper, nontrivial subgroup. Note: a subgroup $H \subseteq G$ is proper if $H \neq G$ and nontrivial if $H \neq \{e\}$.
 - (b) If (G, \cdot) is a group and $a, b, \in G$ with |a| = n and |b| = m, then $|ab| \leq \operatorname{lcm}(n, m)$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

- (C1) Suppose (G, *) is a group, where $G = \{0, 1, 2, 3, 4, 5, 6, 7\}$ and * is an operation satisfying
 - (i) $a * b \le a + b$ for every $a, b \in G$, and
 - (ii) a * a = 0 for every $a \in G$.

Write out the operation table for G, and **briefly** justify why this is the only possibility.