Fall 2021, Math 620: Week 2 Problem Set Due: Thursday, September 9th, 2021 Permutation Groups

Discussion problems. The problems below should be completed in class.

(D1) Working with permutations. Consider the following permutations.

$$\sigma = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \\ 3 \ 5 \ 2 \ 4 \ 1 \end{pmatrix} \quad \tau = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 4 \ 1 \ 6 \ 3 \ 8 \ 2 \ 5 \ 7 \end{pmatrix} \quad \alpha = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 5 \ 2 \ 8 \ 6 \ 1 \ 4 \ 7 \ 3 \end{pmatrix}$$

- (a) Write each of the above permutations as a product of disjoint cycles.
- (b) Find the order of each element above. Hint: do the disjoint cycles help?
- (c) Write each of the above permutations as a product of 2-cycles in two different ways.
- (d) Determine which of the above permutations are even, and which are odd.
- (e) Is it possible to write σ or τ as a product of disjoint 2-cycles?
- (f) Write σ^{-1} , τ^{-1} , and α^{-1} as a products of disjoint cycles, and as products of 2-cycles. Hint: you have already written σ , τ , and α in these forms!
- (g) Determine whether σ^{91} is even or odd.
- (D2) The alternating group. Let $A_n \subset S_n$ denote the set of even permutations of n.
 - (a) Find all elements of A_3 .
 - (b) Prove that A_n is a subgroup of S_n .
 - (c) Find a formula for $|A_n|$ in terms of n.
- (D3) Group elements as permutations. The goal of this problem is to develop intuition behind the following theorem.

Theorem. Every finite group G with |G| = n is isomorphic to a subgroup of S_n .

- (a) The goal of the first few parts is to identify a subgroup of S_6 isomorphic to D_3 . Choose a labeling of the elements of D_3 as a_1, a_2, \ldots, a_6 (you may do this in any way you wish).
- (b) Let $r \in D_3$ denote clockwise rotation by 120°. Define a permutation $\sigma \in S_6$ given by $\sigma(i) = k$ whenever $a_k = ra_i$. Verify that σ is indeed a permutation by writing it in permutation notation.
- (c) Repeat the previous part for each $a \in D_3$ (that is, define a permutation $\sigma_a \in S_6$ given by $\sigma(i) = k$ where $a_k = aa_i$). Write down all 6 resulting permutations (you may want to "divide and conquer" amongst your groupmates to save time!).
- (d) Verify in three examples that for any $a, b \in D_3$, the permutation corresponding to ab equals the product of the permutations corresponding to a and b.
- (e) Using the ideas above, find a subgroup of S_4 isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- (f) Using the ideas above, find a subgroup of S_n isomorphic to \mathbb{Z}_n .
- (g) Fix a group G, with elements labeled a_1, \ldots, a_n , and an element $a \in G$. Prove the function σ_a defined by $\sigma(i) = k$ whenever $a_k = ra_i$ is indeed a permutation in S_n .
- (h) Prove that the function $\varphi: G \to S_n$ given by $a \mapsto \sigma_a$ is an isomorphism onto its image.

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) It turns out $GL_2(\mathbb{Z}_2)$ is isomorphic to either S_3 or \mathbb{Z}_6 . Determine which.
- (H2) Identify an element of S_9 of order 20.
- (H3) Prove S_n is isomorphic to a subgroup of A_{n+2} .
- (H4) Determine whether each of the following statements is true or false. Prove your assertions.
 - (a) The group $(\mathbb{Q}, +)$ is cyclic.
 - (b) For each $n \ge 3$, every permutation in S_n can be written as a product of 3-cycles.
 - (c) For each $n \ge 3$, every permutation in S_n is a product of at most n-1 transpositions.
 - (d) For each $n \geq 3$, every permutation in S_n is a product of adjacent transpositions.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Locate a generating set for S_n consisting of only 2 generators.