Fall 2021, Math 620: Week 2 Problem Set Due: Thursday, September 9th, 2021 Permutation Groups

Discussion problems. The problems below should be completed in class.
(D1) Working with permutations. Consider the following permutations.

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 2 & 4 & 1
\end{array}\right) \quad \tau=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 1 & 6 & 3 & 8 & 2 & 5 & 7
\end{array}\right) \quad \alpha=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 2 & 8 & 6 & 1 & 4 & 7 & 3
\end{array}\right)
$$

(a) Write each of the above permutations as a product of disjoint cycles.
(b) Find the order of each element above. Hint: do the disjoint cycles help?
(c) Write each of the above permutations as a product of 2-cycles in two different ways.
(d) Determine which of the above permutations are even, and which are odd.
(e) Is it possible to write σ or τ as a product of disjoint 2-cycles?
(f) Write σ^{-1}, τ^{-1}, and α^{-1} as a products of disjoint cycles, and as products of 2-cycles. Hint: you have already written σ, τ, and α in these forms!
(g) Determine whether σ^{91} is even or odd.
(D2) The alternating group. Let $A_{n} \subset S_{n}$ denote the set of even permutations of n.
(a) Find all elements of A_{3}.
(b) Prove that A_{n} is a subgroup of S_{n}.
(c) Find a formula for $\left|A_{n}\right|$ in terms of n.
(D3) Group elements as permutations. The goal of this problem is to develop intuition behind the following theorem.

Theorem. Every finite group G with $|G|=n$ is isomorphic to a subgroup of S_{n}.
(a) The goal of the first few parts is to identify a subgroup of S_{6} isomorphic to D_{3}. Choose a labeling of the elements of D_{3} as $a_{1}, a_{2}, \ldots, a_{6}$ (you may do this in any way you wish).
(b) Let $r \in D_{3}$ denote clockwise rotation by 120°. Define a permutation $\sigma \in S_{6}$ given by $\sigma(i)=k$ whenever $a_{k}=r a_{i}$. Verify that σ is indeed a permutation by writing it in permutation notation.
(c) Repeat the previous part for each $a \in D_{3}$ (that is, define a permutation $\sigma_{a} \in S_{6}$ given by $\sigma(i)=k$ where $a_{k}=a a_{i}$). Write down all 6 resulting permutations (you may want to "divide and conquer" amongst your groupmates to save time!).
(d) Verify in three examples that for any $a, b \in D_{3}$, the permutation corresponding to $a b$ equals the product of the permutations corresponding to a and b.
(e) Using the ideas above, find a subgroup of S_{4} isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(f) Using the ideas above, find a subgroup of S_{n} isomorphic to \mathbb{Z}_{n}.
(g) Fix a group G, with elements labeled a_{1}, \ldots, a_{n}, and an element $a \in G$. Prove the function σ_{a} defined by $\sigma(i)=k$ whenever $a_{k}=r a_{i}$ is indeed a permutation in S_{n}.
(h) Prove that the function $\varphi: G \rightarrow S_{n}$ given by $a \mapsto \sigma_{a}$ is an isomorphism onto its image.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) It turns out $G L_{2}\left(\mathbb{Z}_{2}\right)$ is isomophic to either S_{3} or \mathbb{Z}_{6}. Determine which.
(H2) Identify an element of S_{9} of order 20.
(H3) Prove S_{n} is isomorphic to a subgroup of A_{n+2}.
(H4) Determine whether each of the following statements is true or false. Prove your assertions.
(a) The group $(\mathbb{Q},+)$ is cyclic.
(b) For each $n \geq 3$, every permutation in S_{n} can be written as a product of 3-cycles.
(c) For each $n \geq 3$, every permutation in S_{n} is a product of at most $n-1$ transpositions.
(d) For each $n \geq 3$, every permutation in S_{n} is a product of adjacent transpositions.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Locate a generating set for S_{n} consisting of only 2 generators.

