Fall 2021, Math 620: Week 3 Problem Set
 Due: Thursday, September 16th, 2021
 Cosets and Quotient Groups

Discussion problems. The problems below should be completed in class.
(D1) Geometry and cosets. This problem concerns the subgroup $H=\langle(1,3),(3,1)\rangle \subset \mathbb{Z}^{2}$.
(a) Draw a grid of points from $(-2,-2)$ to $(8,8)$. Draw the axes as well.
(b) Circle the elements of H on the grid in black.
(c) Choose an element $a \notin H$, and circle the points in $a+H$ in a color other than black.
(d) Choose an element $a^{\prime} \notin H \cup(a+H)$, and circle the points in $a^{\prime}+H$ in a third color.
(e) Draw lines connecting the origin to the generators of H, as well as from the generators of H to their sum (this should form a parallelogram). Does this indicate a choice of "natural" representatives?
(f) Determine what more familiar group G / H is isomorphic to. Hint: determine $|G / H|$, and find the orders of some of the elements.
(D2) Arithmetic in quotient groups. Consider the unit interval as an additive group, viewed as the quotient group \mathbb{R} / \mathbb{Z}.
(a) Explain why every element of \mathbb{R} / \mathbb{Z} has a unique representative in $[0,1)$.
(b) Show that \mathbb{R} / \mathbb{Z} has elements of every possible order.
(c) Does \mathbb{Q} / \mathbb{Z} have elements of every possible order?
(d) Does \mathbb{Q} / \mathbb{Z} have infinitely many elements of a particular order?
(D3) Subgroup correspondence. The goal of this problem is to discover the "correspondence theorem" for subgroups of quotient groups.
(a) Find all 4 subgroups of \mathbb{Z}_{6}, and list the elements of each. Draw the subgroups in a diamond shape, with \mathbb{Z}_{4} at the top and $\{0\}$ at the bottom, and lines between subgroups indicating set containment (this is called the subgroup lattice of \mathbb{Z}_{6}).
(b) Draw the subgroup lattice of \mathbb{Z}_{24}. Write each subgroup in the form $\langle n\rangle$.
(c) Do the same for the subgroup lattice of \mathbb{Z}_{72}.
(d) Locate a subgroup $H \subset \mathbb{Z}_{72}$ so that $\mathbb{Z}_{72} / H \cong \mathbb{Z}_{24}$. Draw a circle in a different color around the subgroups of \mathbb{Z}_{72} containing H. What do you notice about the shape of these subgroups and the shape of the subgroup lattice of \mathbb{Z}_{24} ?
(e) Find all 10 subgroups of the group D_{4}, and draw the subgroup lattice (draw big, and write each subgroup as a set of elements). Draw a big circle around the collection of subgroups containing $H=\left\{e, r^{2}\right\}$ (including H and G).
(f) Choose a coset of H, and mark all listed elements in a second color.
(g) Choose another coset of H, and do the same in a third color.
(h) Does any subgroup of D_{4} containing H appear to contain any "partial" cosets of H ?
(i) It turns out $D_{4} / H \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Draw the subgroup lattice of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. What do you notice about its shape compared to the shape of the subgroups of D_{4} containing H ?

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Suppose G is a group and $H \subseteq G$ is a subgroup. Prove from first principles (i.e., without using any theorems) that H is normal if and only if $a h a^{-1} \in H$ for all $h \in H, a \in G$.
(H2) Fix a group G. Define the center of G as the set

$$
C=\{c \in G: c a=a c \text { for all } a \in G\}
$$

of elements that commute with every element of G.
(a) Prove C is a normal subgroup of G.

Hint: use Problem (H1).
(b) Prove or disprove: G / C has trivial center.
(H3) Fix a group (G, \cdot) and a normal subgroup $H \subseteq G$. In what follows, consider the map

$$
\begin{aligned}
\varphi: G & \longrightarrow G / H \\
a & \longmapsto[a]_{H}
\end{aligned}
$$

(a) Prove if $K \subseteq G / H$ is a subgroup, then $H^{\prime}=\varphi^{-1}(K)$ is a subgroup of G containing H. Note: the elements of K are cosets of H.
(b) Prove if $H^{\prime} \subseteq G$ is a subgroup with $H \subseteq H^{\prime}$, then $K=\varphi\left(H^{\prime}\right)$ is a subgroup of G / H.
(c) Conclude that there is a bijective correspondence

$$
\left\{\text { subgroups } H^{\prime} \subseteq G \text { containing } H\right\} \longleftrightarrow\{\text { subgroups } K \subseteq G / H\}
$$

that preserves containment.
Note: there is no work to be done for this part.
(H4) The following questions pertain to the correspondence theorem from Problem (H3). Prove any assertions you make.
(a) If a subgroup of G / H is normal, is its corresponding subgroup of G normal? What about the converse of this statement?
(b) If a subgroup of G / H is cyclic, is its corresponding subgroup of G cyclic? What about the converse of this statement?

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Suppose p is prime. Find all groups G (up to isomorphism) with $|G|=p^{2}$.

