Fall 2021, Math 620: Week 4 Problem Set Due: Thursday, September 23rd, 2021 Isomorphism Theorems

Discussion problems. The problems below should be worked on in class.

- (D1) Homomorphisms. Fix a group homomorphism $\varphi: G \to G'$.
 - (a) Prove $\varphi(e) = e$. Where does each "e" live?
 - (b) Prove for all $a \in G$, $\varphi(a^{-1}) = (\varphi(a))^{-1}$.
 - (c) Prove φ is injective if and only if ker(φ) is trivial.
 - (d) Prove $\text{Im}(\varphi)$ is a subgroup of G'.
 - (e) Prove that $G/\ker(\varphi) \to \operatorname{Im}(\varphi)$ given by $[a] \mapsto \varphi(a)$ is an isomorphism. Hint: we have already shown the map is well-defined.
- (D2) The first isomorphism theorem. Prove the following using the first isomorphism theorem.
 - (a) $G/\{e\} \cong G$ and $G/G \cong \{e\}$ for any group G.
 - (b) $S_n/A_n \cong \mathbb{Z}_2$.
 - (c) $GL_n(\mathbb{R})/SL_n(\mathbb{R}) \cong (\mathbb{R} \setminus \{0\}, \cdot).$
 - (d) $GL_n(\mathbb{R})/D \cong SL_n(\mathbb{R})$, where $D = \{\lambda I_n : \lambda \in \mathbb{R} \setminus \{0\}\}$ is the set of nonzero scalar multiples of the identity matrix.
- (D3) The third isomorphism theorem. The goal of this problem is to prove the following theorem. Tip: due to the large number of quotients in this problem, use the bracket notation for all quotient group elements (e.g., $[a]_H$).

Theorem. If (G, \cdot) is a group and $K, H \triangleleft G$ with $K \subset H$, then $(G/K)/(H/K) \cong G/H$.

- (a) Let $G = \mathbb{Z}_{24}$, $H = \{[3k]_{24} : k \in \mathbb{Z}\}$, and $K = \{[12k]_{24} : k \in \mathbb{Z}\}$. Verify the above theorem holds in this case.
- (b) Explain why H/K is a subset of G/K. Use the word "coset" in your explanation.
- (c) Complete each of the following without using any existing isomorphism theorems.
 - (i) Prove that H/K is a subgroup G/K.
 - (ii) Propose a map $\varphi : (G/K)/(H/K) \to G/H$ to serve as a starting place for the isomorphism. Why is your map a natural choice?
 - (iii) Prove your map φ is well defined.
 - (iv) Verify your map φ is a homomorphism.
 - (v) Complete the proof by proving φ is a bijection.
- (d) Can the above proof be shortened using the first isomorphism theorem? In particular, can we define a homomorphism $\phi: G/K \to G/H$ whose kernel equals H/K?

Homework problems. You must submit *all* homework problems in order to receive full credit.

(H1) Using the first isomorphism theorem, prove that for any groups G and G',

$$G \times G' / (G \times \{e\}) \cong G'.$$

- (H2) An *automorphism* of a group G is an isomorphism $\varphi : G \to G$. Denote the set of automorphisms of G by Aut(G).
 - (a) Prove that Aut(G) is a group under function composition.
 - (b) Determine which familiar group $Aut(\mathbb{Z})$ is isomorphic to.
- (H3) Suppose G is a group. Given $a \in G$, define $f_a : G \to G$ by $f_a(x) = axa^{-1}$.
 - (a) Prove f_a is an automorphism (these are known as *inner automorphisms*).
 - (b) Let $\operatorname{Inn}(G) = \{f_a : a \in G\} \subseteq \operatorname{Aut}(G)$. Prove $\operatorname{Inn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$.
 - (c) Let $\varphi: G \to \text{Inn}(G)$ denote the map $a \mapsto f_a$. Characterize the elements of G in ker (φ) .
 - (d) Characterize which groups G have a unique inner automorphism.
- (H4) Determine whether each of the following statements is true or false. Prove your assertions.
 - (a) If G is a group and $H, K \triangleleft G$ with $K \subset H$, then $G/H \times H/K \cong G/K$.
 - (b) If G, G' are groups and $H \triangleleft G, H' \triangleleft G'$, then $(G \times G')/(H \times H') \cong (G/H) \times (G'/H')$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Suppose G is a group and $H, K \triangleleft G$ with HK = G. Determine under what condition(s) involving H and K we have $G \cong G/H \times G/K$.