Fall 2021, Math 620: Week 5 Problem Set
 Due: Thursday, September 30th, 2021
 Relations and Group Presentations

Discussion problems. The problems below should be completed in class.
(D1) Free groups and relations.
(a) Let $F_{1}=\langle a\rangle$ denote the free group on 1 generator. Locate an isomorphism $F_{1} \rightarrow \mathbb{Z}$. (You do not have to prove it is an isomorphism.)
(b) Draw the Cayley graph of the group $G=\left\langle r, f \mid f^{2}, r f r f\right\rangle$ (this is identical to the presentation of D_{n} without the r^{n} relation). Is G finite or infinite?
(c) Let $G=\left\langle a, b \mid a^{2}, b^{2}, a b a^{-1} b^{-1}\right\rangle$. Determine what more familiar group G is.
(D2) Generating normal subgroups. Let $F_{2}=\langle a, b\rangle$ denote the free group on 2 generators.
(a) Find the smallest subgroup of D_{4} containing f (i.e., the subgroup generated by f).
(b) Find the smallest normal subgroup of D_{4} containing f. Does this differ from part (a)?
(c) One way to obtain the smallest subgroup of a group G containing given elements g and h is to take all possible products of g and h and their inverses. What additional steps must we take to obtain the smallest normal subgroup containing g and h ?
(d) Use the previous part to identify the smallest subgroup of D_{8} containing f.
(e) Let $H=\langle a\rangle$ denote the smallest normal subgroup of F_{2} containing a.
(i) Determine which familiar group $F_{2} / H=\langle a, b \mid a\rangle$ is isomorphic to.
(ii) Demonstrate $a^{2} b^{-2} a^{17} b^{5} a^{3} b^{-3} a^{-2} \in H$ using your answer to part (c) above.
(iii) Determine $a^{2} b^{-2} a^{17} b^{5} a^{3} \notin H$ using your answer to part (i) above.
(f) From here on, we must pay close attention when using brackets \rangle to define a subgroup that we specify in words whether we mean the plain subgroup with those generators or the normal subgroup with those generators.
Note: there is nothing to do for this part. Internalize the statement, then continue on.
(D3) Group presentations. Let $F_{2}=\langle a, b\rangle$ denote the free group on 2 generators.
(a) For each of the following normal subgroups H_{1} and H_{2}, prove $H_{1}=H_{2}$ by representing each generator of H_{1} as a product of conjugates of generators of H_{2}, and visa versa.
(i) $H_{1}=\left\langle a^{3} b^{2}\right\rangle, H_{2}=\left\langle b a^{3} b\right\rangle$.
(ii) $H_{1}=\left\langle a b a^{-1} b^{-1}, a^{2} b^{3} a b^{4}\right\rangle, H_{2}=\left\langle a b a^{-1} b^{-1}, a^{3} b^{7}\right\rangle$.
(iii) $H_{1}=\left\langle a^{4} b a^{-3} b^{-2}, a^{3} b^{2} a^{-2} b^{-3}, a^{2} b^{3} a^{-1} b^{-4}\right\rangle$, $H_{2}=\left\langle a^{4} b a^{-3} b^{-2}, a^{3} b^{2} a^{-2} b^{-3}, a^{4} b a^{-1} b^{-4}\right\rangle$.
(b) Consider the normal subgroup $H=\left\langle a^{4}, b^{4}, a^{2} b^{-2}, a b a b^{-1}\right\rangle$, and let $G=F_{2} / H$. Find $|G|$, and determine whether G is Abelian.
(c) Choose $\sigma, \tau \in S_{3}$ that generate S_{3}. Locate generators for a normal subgroup $H \subset F_{2}$ so that $F_{2} / H \cong S_{3}$ with $a \mapsto \sigma$ and $b \mapsto \tau$.
(d) Let $F_{3}=\langle x, y, z\rangle$ denote the free group on 3 generators. Locate a (not necessarily normal) subgroup of F_{2} that is isomorphic to F_{3}.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) The following theorem is known as the Fundamental Theorem of Finite Abeilan Groups.
Theorem. Every finite Abelian group is isomorphic to a direct product of cyclic groups.
Using this statement of the Fundamental Theorem (i.e., no specializations found in a textbook or other sources), find all Abelian groups of order 24 up to isomorphism. Ensure your list does not have any duplicates!
(H2) Let $G=\left\langle a, b \mid a b a^{-1} b^{-2}, b a b^{-1} a^{-2}\right\rangle$. Determine $|G|$.
(H3) Identify which "familiar" group each of the following is isomorphic to.
(a) $G=\left\langle a, b \mid a^{4}, b^{2}, a b a^{-1} b^{-1}\right\rangle$
(b) $G=\left\langle a, b, c \mid a^{4}, b^{2}, c^{2}, a b c, a c a c\right\rangle$
(H4) Determine whether each of the following statements is true or false. Prove your assertions.
(a) If $F_{2}=\langle a, b\rangle$ is the free group on 2 generators, then the subgroup $H=\left\langle a b, a b^{2}\right\rangle \subseteq F_{2}$ and normal subgroup $H^{\prime}=\left\langle a b, a b^{2}\right\rangle \subseteq F_{2}$ are identical subsets of F_{2}.
(b) The group $(\mathbb{Q},+)$ is a quotient of the free group on 2 generators.
(c) Up to isomorphism, the only non-Abelian group of order 8 is D_{4}.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Determine which familiar group is isomorphic to $G=\left\langle a, b \mid a^{4}, b^{2},(a b)^{3}\right\rangle$.

