Fall 2021, Math 620: Week 5 Problem Set Due: Thursday, September 30th, 2021 Relations and Group Presentations

Discussion problems. The problems below should be completed in class.

- (D1) Free groups and relations.
 - (a) Let $F_1 = \langle a \rangle$ denote the free group on 1 generator. Locate an isomorphism $F_1 \to \mathbb{Z}$. (You do not have to prove it is an isomorphism.)
 - (b) Draw the Cayley graph of the group $G = \langle r, f \mid f^2, rfrf \rangle$ (this is identical to the presentation of D_n without the r^n relation). Is G finite or infinite?
 - (c) Let $G = \langle a, b \mid a^2, b^2, aba^{-1}b^{-1} \rangle$. Determine what more familiar group G is.
- (D2) Generating normal subgroups. Let $F_2 = \langle a, b \rangle$ denote the free group on 2 generators.
 - (a) Find the smallest subgroup of D_4 containing f (i.e., the subgroup generated by f).
 - (b) Find the smallest **normal** subgroup of D_4 containing f. Does this differ from part (a)?
 - (c) One way to obtain the smallest subgroup of a group G containing given elements g and h is to take all possible products of g and h and their inverses. What additional steps must we take to obtain the smallest **normal** subgroup containing g and h?
 - (d) Use the previous part to identify the smallest subgroup of D_8 containing f.
 - (e) Let $H = \langle a \rangle$ denote the smallest **normal** subgroup of F_2 containing a.
 - (i) Determine which familiar group $F_2/H = \langle a, b \mid a \rangle$ is isomorphic to.
 - (ii) Demonstrate $a^2b^{-2}a^{17}b^5a^3b^{-3}a^{-2} \in H$ using your answer to part (c) above.
 - (iii) Determine $a^2b^{-2}a^{17}b^5a^3 \notin H$ using your answer to part (i) above.
 - (f) From here on, we must pay close attention when using brackets () to define a subgroup that we specify in words whether we mean the plain subgroup with those generators or the normal subgroup with those generators.
 Note: there is not him to define this next. Intervaling the statement, then continue and the statement of the statement of the statement.

Note: there is nothing to do for this part. Internalize the statement, then continue on.

- (D3) Group presentations. Let $F_2 = \langle a, b \rangle$ denote the free group on 2 generators.
 - (a) For each of the following **normal** subgroups H_1 and H_2 , prove $H_1 = H_2$ by representing each generator of H_1 as a product of conjugates of generators of H_2 , and visa versa.
 - (i) $H_1 = \langle a^3 b^2 \rangle, H_2 = \langle b a^3 b \rangle.$
 - (ii) $H_1 = \langle aba^{-1}b^{-1}, a^2b^3ab^4 \rangle, H_2 = \langle aba^{-1}b^{-1}, a^3b^7 \rangle.$
 - (iii) $H_1 = \langle a^4 b a^{-3} b^{-2}, a^3 b^2 a^{-2} b^{-3}, a^2 b^3 a^{-1} b^{-4} \rangle,$ $H_2 = \langle a^4 b a^{-3} b^{-2}, a^3 b^2 a^{-2} b^{-3}, a^4 b a^{-1} b^{-4} \rangle.$
 - (b) Consider the **normal** subgroup $H = \langle a^4, b^4, a^2b^{-2}, abab^{-1} \rangle$, and let $G = F_2/H$. Find |G|, and determine whether G is Abelian.
 - (c) Choose $\sigma, \tau \in S_3$ that generate S_3 . Locate generators for a normal subgroup $H \subset F_2$ so that $F_2/H \cong S_3$ with $a \mapsto \sigma$ and $b \mapsto \tau$.
 - (d) Let $F_3 = \langle x, y, z \rangle$ denote the free group on 3 generators. Locate a (not necessarily normal) subgroup of F_2 that is isomorphic to F_3 .

Homework problems. You must submit *all* homework problems in order to receive full credit.

(H1) The following theorem is known as the Fundamental Theorem of Finite Abeilan Groups.

Theorem. Every finite Abelian group is isomorphic to a direct product of cyclic groups.

Using this statement of the Fundamental Theorem (i.e., no specializations found in a textbook or other sources), find all Abelian groups of order 24 up to isomorphism. Ensure your list does not have any duplicates!

- (H2) Let $G = \langle a, b \mid aba^{-1}b^{-2}, bab^{-1}a^{-2} \rangle$. Determine |G|.
- (H3) Identify which "familiar" group each of the following is isomorphic to.
 - (a) $G = \langle a, b \mid a^4, b^2, aba^{-1}b^{-1} \rangle$
 - (b) $G = \langle a, b, c \mid a^4, b^2, c^2, abc, acac \rangle$
- (H4) Determine whether each of the following statements is true or false. Prove your assertions.
 - (a) If $F_2 = \langle a, b \rangle$ is the free group on 2 generators, then the **subgroup** $H = \langle ab, ab^2 \rangle \subseteq F_2$ and **normal subgroup** $H' = \langle ab, ab^2 \rangle \subseteq F_2$ are identical subsets of F_2 .
 - (b) The group $(\mathbb{Q}, +)$ is a quotient of the free group on 2 generators.
 - (c) Up to isomorphism, the only non-Abelian group of order 8 is D_4 .

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Determine which familiar group is isomorphic to $G = \langle a, b \mid a^4, b^2, (ab)^3 \rangle$.