Fall 2021, Math 620: Week 6 Problem Set Due: Thursday, October 7th, 2021 Introduction To Rings

Discussion problems. The problems below should be worked on in class.

- (D1) Checking ring axioms. Determine which of the following sets R is a ring under the given addition and multiplication. For each ring, determine whether it is (i) commutative and (ii) a field.
 - (a) The set R of 2×2 real matrices (under matrix addition/multiplication) given by

$$R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{R} \right\} \subseteq M_2(\mathbb{R}).$$

- (b) The set $R = \{r_5x^5 + \cdots + r_1x + r_0 : r_i \in \mathbb{R}\} \subset \mathbb{R}[x]$ of polynomials in a variable x with real coefficients and **degree at most 5**, under the usual addition and multiplication.
- (c) The set $R = \mathbb{R} \cup \{\infty\}$ of real numbers together with infinity, and addition and multiplication operations $a \oplus b = \min(a, b)$ and $a \odot b = a + b$, respectively (in particular, for all $a \in R$, we have $a \oplus \infty = a$ and $a \odot \infty = \infty$).
- (d) The set $R = \mathbb{Z}$ with operations \oplus and \odot given by $a \oplus b = a + b$ and $a \odot b = a + b$ (in particular, **both** addition and multiplication in R correspond to integer addition).
- (e) The set $R = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ continuous}\}\$ of continuous real-valued functions on \mathbb{R} , where addition + is the usual addition of functions, and multiplication \odot is given by composition, e.g. $\sin(x) \odot e^x = \sin(e^x)$.
- (f) The set $R = \{p(x) \in \mathbb{R}[x] : p(0) \in \mathbb{Z}\}$ of polynomials in a variable x with real coefficients and **integer constant term**, under the usual addition and multiplication. For example, $2x^2 + \frac{1}{2}x + 5 \in R$ and $\frac{6}{5}x \in R$, but $5x + \frac{1}{3} \notin R$.
- (D2) Cartesian products. The Cartesian product of two rings R_1 and R_2 is the set

$$R_1 \times R_2 = \{(a, b) : a \in R_1, b \in R_2\}$$

with addition (a,b)+(a',b')=(a+a',b+b') and multiplication $(a,b)\cdot(a',b')=(a\cdot a',b\cdot b')$. Note: the operation in each coordinate happen in their respective rings.

- (a) Determine which elements of $\mathbb{Z}_5 \times \mathbb{Z}_4$ are units, and which are zero-divisors.
- (b) Suppose $m, n \geq 2$. Determine the units and zero-divisors of $\mathbb{Z}_m \times \mathbb{Z}_n$.
- (c) Suppose R_1 and R_2 are rings. Determine which elements of $R_1 \times R_2$ are units, in terms of the units of R_1 and the units of R_2 .
- (d) Suppose R_1 and R_2 are rings. Determine which elements of $R_1 \times R_2$ are zero-divisors, in terms of the zero-divisors of R_1 and the zero-divisors of R_2 .

Homework problems. You must submit *all* homework problems in order to receive full credit.

(H1) Let $R = \mathbb{Z}$ and define

$$a \oplus b = a + b + 1$$
 and $a \odot b = ab + a + b$

for all $a, b \in R$. Prove that (R, \oplus, \odot) is a commutative ring. Is R a field?

- (H2) **** **EXCISED** ****
- (H3) Suppose $R = \{0_R, 1_R, a\}$ is a ring with 3 distinct elements. Use the ring axioms to fill in the addition table and multiplication table of R. Give a justification for each entry (and in doing so, you will prove there is exactly one way to fill them in).
- (H4) Suppose $(R, +, \cdot)$ is a ring. Prove each of the following. Identify each ring axiom you use, and try to only use one axiom in each step.
 - (a) Prove R is an integral domain if and only if R is commutative, has unity, and for all $a, b, c \in R$, if ab = ac and $a \neq 0_R$, then b = c (this is called the *cancellation* property).
 - (b) If R has unity and $1_R = 0_R$, then $R = \{0_R\}$.
- (H5) Determine whether each of the following statements is true or false. Prove your assertions.
 - (a) If R_1 and R_2 are rings, then every nonzero element of $R_1 \times R_2$ is either a unit or a zero-divisor.
 - (b) If R is a commutative ring and $a, b \in R$ are zero divisors, then ab is a zero divisor. Hint: this one is subtle!

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Locate a ring R with unity 1_R and a subring $S \subset R$ with unity 1_S such that $1_R \neq 1_S$ (that is, the unity of S is a **different element** than the unity of R).