Fall 2021, Math 620: Week 7 Problem Set
 Due: Thursday, October 14th, 2021
 Ideals and Quotient Rings

Discussion problems. The problems below should be worked on in class.
(D1) Determining ring homomorphisms with minimal effort.
(a) Suppose $\varphi: \mathbb{Z}[x] \rightarrow R$ is a ring homomorphism, and that $\varphi(1)=1_{R}$ and $\varphi(x)=a$. Determine $\varphi\left(x^{3}+2 x^{2}+17 x-4\right)$ in terms of a.
(b) Suppose $\varphi: \mathbb{Q}[x] \rightarrow R$ is a ring homomorphism, and that $\varphi(1)=1_{R}$ and $\varphi(x)=a$. Determine $\varphi\left(\frac{5}{2}\right)$ and $\varphi\left(3 x^{2}-\frac{1}{3} x+\frac{17}{52}\right)$ in terms of a.
(c) Does there exist a nontrivial ring homomophism $\varphi: \mathbb{Q} \rightarrow \mathbb{Z}$?
(D2) Polynomial ring quotients.
(a) Let $I=\left\langle x^{2}+5 x, x+2\right\rangle=\mathbb{Q}[x]$. Demonstrate that $I=\mathbb{Q}[x]$. Hint: recall that $I=\left\{\left(x^{2}+5 x\right) f(x)+(x+2) g(x): f, g \in \mathbb{Q}[x]\right\}$
(b) Locate a single element that generates the ideal $I=\left\langle x^{2}-2 x, x^{3}+5 x^{2}\right\rangle \subseteq \mathbb{Q}[x]$.
(c) Consider the quotient ring $R=\mathbb{R}[x] /\left\langle x^{2}+1\right\rangle$.
(i) Argue that every element can be written in the form $[a x+b]$ for some $a, b \in \mathbb{R}$.
(ii) What happens if you square the element $[x]$? How is this similar to $i \in \mathbb{C}$?
(iii) Use the first isomorphism theorem to prove $\mathbb{R}[x] /\left\langle x^{2}+1\right\rangle \cong \mathbb{C}$.
(d) Let $\mathbb{Q}[\sqrt{2}]=\{f(\sqrt{2}): f(x) \in \mathbb{Q}[x]\}$. What is the simplest way we can write a general element of $\mathbb{Q}[\sqrt{2}]$? Write a general multiplication rule for $\mathbb{Q}[\sqrt{2}]$.
(e) Identify $\mathbb{Q}[\sqrt{2}]$ as a quotient of the polynomial ring $\mathbb{Q}[x]$. Use the first isomorphism theorem to prove your claim.
(f) Determine whether $\mathbb{R}[x] /\left\langle x^{2}-4\right\rangle$ is an integral domain, a field, or neither.
(g) Suppose R is a ring such that some $t \in R \backslash\{1,-1\}$ has $t^{2}=1$. Prove R is not a field. Find an example of such a ring.
(D3) Prime and maximal ideals. Fix a commutative ring R and an ideal I. We say I is prime if R / I is an integral domain, and I is maximal if R / I is a field.
(a) Suppose R is a field. Classify all ideals of R.
(b) Suppose I is maximal, and fix an ideal J with $I \subsetneq J \subseteq R$. What can be said about J ?
(c) State and prove an equivalent condition for I to be maximal that avoids quotient rings.
(d) Suppose I is prime, and fix ring elements $a, b \notin I$. Under what conditions is $a b \in I$?
(e) State and prove an equivalent condition for I to be prime that avoids quotient rings.
(f) Let $R=\mathbb{Z}[x]$ and $I=\langle 2, x\rangle$. Prove I is maximal by identifying R / I.
(g) Identify 3 distinct maximal ideals in $\mathbb{Q}[x, y]$.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Consider the rings $R_{1}=\mathbb{Q}[x] /\left\langle x^{2}-1\right\rangle$ and $R_{2}=\mathbb{Q}[x] /\left\langle x^{2}+1\right\rangle$.
(a) Are R_{1} and R_{2} isomorphic as additive groups?
(b) Are R_{1} and R_{2} isomorphic as rings?
(H2) Fix an ideal $I \subset R$. We say I is prime if R / I is an integral domain and I is maximal if R / I is a field. Consulting your favorite abstract algebra textbook (the lecture schedule on the course webpage lists the relevant sections in both Dummit \& Foote and Hungerford), read and internalize the proofs that
(a) I is prime if and only if $a b \in I$ implies $a \in I$ or $b \in I$, and
(b) I is maximal if and only if $I \subsetneq R$ and there is no ideal J with $I \subsetneq J \subsetneq R$.

Once you have completed this, it suffices to write "DONE" as your answer.
(H3) Consider the ring

$$
\mathbb{Q} \llbracket x \rrbracket=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots: a_{i} \in \mathbb{Q}\right\}
$$

of formal power series with coefficients in \mathbb{Q}. Here, addition is term-by-term, and multiplication is given by distribution using the following formula.
$\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right)\left(b_{0}+b_{1} x+\cdots\right)=a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}+\cdots$
Notice that on the right side above, each coefficient involves only a finite sum! This way we avoid any questions of convergence.
(a) Determine which elements of $\mathbb{Q} \llbracket x \rrbracket$ are units.
(b) Find all maximal ideals of $\mathbb{Q} \llbracket x \rrbracket$.
(H4) Determine whether each of the following statements is true or false. Prove your assertions.
(a) Every nonzero element of $R=\mathbb{Q}[x] /\left\langle x^{2}\right\rangle$ is either a unit or a zero-divisor.
(b) The characteristic of any field is either 0 or prime.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Prove or disprove: any integral domain R with finitely many elements is a field.

