Fall 2021, Math 620: Week 9 Problem Set
 Due: Thursday, October 28th, 2021
 A Hierarchy of Integral Domains

Discussion problems. The problems below should be worked on in class.
(D1) Euclidean domains. In this problem, we introduce Euclidean domains.
(a) Let $R=\mathbb{Z}$. For each a, b below, find $q, r \in R$ so that $a=q b+r$ with $0 \leq r<b$.
(i) $a=17, b=3$.
(ii) $a=15, b=5$.
(iii) $a=-17, b=5$.
(b) Let $R=\mathbb{Q}[x]$. For each a, b below, find $q, r \in R$ so that $a=q b+r$ with $\operatorname{deg}(r)<\operatorname{deg}(b)$.
(i) $a=x^{5}+3 x^{4}+4 x+1$,
(ii) $a=x^{3}+3 x^{2}+2 x+1$,
$b=2 x^{2}+x+3$.
(c) Let $R=\mathbb{Z}_{5}[x]$. For each a, b below, find $q, r \in R$ so that $a=q b+r$ with $\operatorname{deg}(r)<\operatorname{deg}(b)$.
(i) $a=x^{5}+3 x^{4}+4 x+1$,
(ii) $a=x^{3}+3 x^{2}+2 x+1$,
$b=x^{2}+2 x+3$.
$b=2 x^{2}+x+3$.
(d) Will the division algorithm work in $F[x]$ for any field F ? Briefly justify your answer.
(e) Let $R=\mathbb{Z}[i]$. For each a, b below, find $q, r \in R$ so that $a=q b+r$ with $\|r\|<\|b\|$.
(i) $a=1+21 i$,
(ii) $a=10+15 i$,
(iii) $a=2+23 i$,
$b=4+6 i$.
$b=1+2 i$.

Hint: for part (i), a remainder of 0 is possible.
(f) Are your remainders in part (e) unique?
(g) A Euclidean domain is an integral domain R equipped with a norm $N: R \backslash\{0\} \rightarrow \mathbb{Z}_{\geq 0}$ such that for every $a, b \in R$ with $b \neq 0$, there exists $q, r \in R$ with $r=0$ or $N(r)<N(b)$ so that $a=q b+r$. Identify the norm function of each ring above.
(h) Fill in the blanks in the following proof that $\mathbb{Z}[i]$ is a Euclidean domain.

Proof. Fix $a, b \in \mathbb{Z}[i]$ with $b \neq 0$. Choose q to be the closest point in $\mathbb{Z}[i]$ to a / b in the complex plane. This choice ensures

$$
\|a / b-q\| \leq
$$

meaning that $r=a-q b=$ \qquad satisfies

$$
\|r\|=\left\|\sum_{\quad}\right\| \cdot\|\ldots \quad\| \leq
$$ as desired.

(D2) Greatest common divisors. The goal of this problem is explore gcd() for Euclidean domains.
(a) Let $R=\mathbb{Z}$. Find $\operatorname{gcd}(42,96)$ using the Euclidean algorithm.
(b) Show that the ideal $\langle 42,96\rangle \subset \mathbb{Z}$ is principle.
(c) Let $R=\mathbb{Z}_{3}[x]$. Find $\operatorname{gcd}\left(x^{6}+x^{4}+x^{2}, x^{4}+x^{3}+x\right)$ using the Euclidean algorithm.
(d) Show that the ideal $\left\langle x^{6}+x^{4}+x^{2}, x^{4}+x^{3}+x\right\rangle \subset \mathbb{Z}_{3}[x]$ is principle.
(e) Propose a definition for a (not the) "greatest common divisor" of $a, b \in R$ for any integral domain R.
(f) Prove that if R is a Euclidean domain and $I=\langle a, b\rangle \subset R$, then I is principal.
(g) Prove that if R is a Euclidean domain and $I \subset R$ is any ideal, then I is principal. Note: we are not assuming I is finitely generated!

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Fix $D \in \mathbb{Z}_{>0}$, and let $R=\mathbb{Z}[\sqrt{-D}]$. Consider the function $N: R \backslash\{0\} \rightarrow \mathbb{Z}$ given by

$$
N(a+b \sqrt{-D})=a^{2}+D b^{2}
$$

for $a, b \in \mathbb{Z}$.
(a) Prove that $N(z w)=N(z) N(w)$ for any $z, w \in R$.
(b) Prove that $z \in R$ is a unit if and only if $N(z)=1$.
(c) Prove that if $D=5$, then R is not a UFD.
(d) For $D=2$, determine if R is a Euclidean domain, a PID, a UFD, or none of these.
(H2) Suppose F is a field, and fix $f(x) \in F[x]$ and $a \in F$. Prove that $f(a)=0$ if and only if $f(x)=(x-a) g(x)$ for some $g(x) \in F[x]$.
(H3) Consider the ring

$$
R=\{f(x) \in \mathbb{Q}[x]: f(n) \in \mathbb{Z} \text { for all } n \in \mathbb{Z}\}
$$

of integer valued polynomials.
(a) Prove that R is a ring with $\mathbb{Z}[x] \subsetneq R \subsetneq \mathbb{Q}[x]$.
(b) Prove that R is not a UFD.
(H4) Consider the integral domain

$$
R=\{f(x) \in \mathbb{Q}[x]: f(0) \in \mathbb{Z}\}
$$

consisting of polynomials with rational coefficients and integer constant term. Prove that the polynomial $x \in R$ cannot be written as a product of finitely many irreducible elements of R (we say R is not atomic).

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Prove or disprove: if $I \subset \mathbb{Z}[i]$ is any nontrivial ideal, then $\mathbb{Z}[i] / I$ has finitely many elements.

