Fall 2021, Math 620: Week 10 Problem Set
 Due: Thursday, November 4th, 2021
 Classifying Finite Fields

Discussion problems. The problems below should be worked on in class.
(D1) Finite fields. The goal of this problem is to systematically build "small" finite fields.
(a) Fill in the operation tables of a field $F_{4}=\{0,1, a, b\}$ with exactly 4 elements.
(b) What familiar additive group did you obtain for $\left(F_{4},+\right)$? With this in mind, is the multiplication structure what you expected it to be?
(c) Attempt to do the same for a field F_{6} with exactly 6 elements.

Hint: what can its characteristic be? Use the characteristic to give convenient names to some of the elements (e.g., $a+1, a+2$), and to fill in part of the table.
(D2) Constructing finite fields. The fields constructed in this problem will be used in (D3). Caution: use " z " instead of " x " as your variable throughout this problem!
(a) For each prime p, locate a field \mathbb{F}_{p} with exactly p elements.
(b) Locate an ideal $I=\langle f(z)\rangle \subset \mathbb{Z}_{2}[z]$ so that $\mathbb{F}_{4}=\mathbb{Z}_{2}[z] / I$ is a field with 4 elements.

Hint: what must $\operatorname{deg} f(z)$ be? Since $f(z) \in \mathbb{Z}_{2}[z]$, how many polynomials are there of that degree?
(c) Using this idea, construct fields \mathbb{F}_{8} and \mathbb{F}_{9} with 8 and 9 elements, respectively.
(d) Construct a field \mathbb{F}_{16} with 16 elements. Why is this (slightly) more tricky?
(e) Record your fields at the top of your board before continuing to the next problem!
(D3) Factoring polynomials over finite fields. For clarity in this problem, use " z " when writing elements of each finite field \mathbb{F}_{q} constructed above, and use " x " as the variable in $\mathbb{F}_{q}[x]$. You may omit the brackets for elements of \mathbb{F}_{q}, for instance, $\mathbb{F}_{4}=\{0,1, z, z+1\}$.
(a) Factor the polynomial $x^{5}-x$ over \mathbb{F}_{5}. Do the same for $x^{7}-x$ over \mathbb{F}_{7}.

Hint: for both, begin by looking for roots.
(b) Factor the polynomial $x^{4}-x$ over \mathbb{F}_{4} (here, you may use z and $z+1$ as coefficients when you factor).
(c) Formulate a conjecture for how $x^{q}-x$ factors over \mathbb{F}_{q} (you don't have to prove it!).
(d) Factor $x^{4}-x$ and $x^{8}-x$ over \mathbb{Z}_{2}.
(e) Factor $x^{9}-x$ over \mathbb{Z}_{3}. Hint: find some low-degree irreducible polynomials over \mathbb{Z}_{3}.
(f) Formulate a conjecture about how $x^{p^{r}}-x$ factors over \mathbb{Z}_{p} (proof not required!).
(g) Factor $x^{16}-x$ over \mathbb{F}_{4}. Does this hint at an extension of your conjecture from part (f)?

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Factor $f(x)=x^{5}+x^{4}+1$ over $\mathbb{F}_{2}, \mathbb{F}_{4}$, and \mathbb{F}_{8}.
(H2) Determine how many elements of \mathbb{F}_{32} are primitive. Hint: no excessive calculations needed!
(H3) Find a formula for the product of all nonzero elements of \mathbb{F}_{q}.
(H4) (a) Let $a(n)$ denote the number of degree- n irreducible polynomials over \mathbb{F}_{2}. Prove that

$$
2^{n}=\sum_{d \mid n} d \cdot a(d)
$$

Hint: use the "key lemma" about how $x^{2^{d}}-x$ factors over \mathbb{F}_{2}.
(b) Find the number of irreducible polynomials over \mathbb{F}_{2} with degree exactly 31 . Find the number of irreducible polynomials over \mathbb{F}_{2} with degree exactly 21.
(H5) Determine whether each of the following statements is true or false. Prove your assertions.
(a) No finite field is algebraically closed (recall that a field F is algebraically closed if every polynomial in $F[x]$ has a root in F).
(b) The finite field $\mathbb{F}_{p^{r}}$ has a subring isomoprhic to $\mathbb{F}_{p^{t}}$ whenever $t \leq r$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Fix a finite field \mathbb{F}_{q}, and let $a(n)$ denote the number of irreducible polynomials over \mathbb{F}_{q} of degree exactly n. Prove that

$$
\lim _{n \rightarrow \infty} \frac{a(n)}{q^{n}}=0
$$

meaning that irreducible polynomials are "sparse" in $\mathbb{F}_{q}[x]$.

