Fall 2021, Math 620: Week 13 Problem Set
 Due: Tuesday, November 23rd, 2021
 Introduction to Modules

Discussion problems. The problems below should be worked on in class.
(D1) Modules. Fix a (commutative) ring R (with unity) and (left) R-modules M, N.
(a) Define: (i) an R-module homomorphism $\varphi: M \rightarrow N$; and (ii) the kernel $\operatorname{ker} \varphi$.
(b) Suppose $\varphi: M \rightarrow N$ is a homomorphism. Prove one of the following (both are true).
(i) $\operatorname{ker} \varphi$ is a submodule of M.
(ii) $\operatorname{Im} \varphi$ is a submodule of N.
(c) Prove that the annihilator of M, defined as

$$
\operatorname{ann}(M)=\{r \in R: r m=0 \text { for all } m \in M\}
$$

is an ideal of R.
(d) Prove that $\operatorname{ann}(R / I)=I$ for any ideal I.
(D2) Generators. Fix a (commutative) ring R (with unity) and a (left) R-module M.
(a) Given ring elements $a_{1}, \ldots, a_{k} \in R$, recall the definition of

$$
\left\langle a_{1}, \ldots, a_{k}\right\rangle=\{ـ\} \subseteq R
$$

the ideal generated by a_{1}, \ldots, a_{k}.
(b) Given elements $m_{1}, \ldots, m_{k} \in M$, decide on a definition of

$$
\left\langle m_{1}, \ldots, m_{k}\right\rangle=\{\square\} \subseteq M,
$$

the submodule of M generated by m_{1}, \ldots, m_{k}. Your answer should be the smallest submodule of M containing m_{1}, \ldots, m_{k}.
(c) Find the smallest, simplest possible generating set of R as an R-module (your answer will look the same regardless of what ring R is).
(d) Find the smallest, simplest possible generating set of $R \oplus R \oplus R$ as an R-module (one might be tempted to call this the standard generating set of $R \oplus R \oplus R)$.
(D3) Generators and relations. Let $R=\mathbb{Q}[x, y]$, and let $e_{1}=(1,0), e_{2}=(0,1) \in R \oplus R$. Let $\varphi: R \oplus R \rightarrow R$ denote the R-module homomorphism with $e_{1} \mapsto x^{3}$ and $e_{2} \mapsto y^{2}$.
(a) Find $\varphi(1,2), \varphi\left(x y, y^{2}\right)$, and $\varphi\left(x^{2}+2 y, y^{5}+2 y+7\right)$.
(b) Find generators for the kernel and image of φ. Justify your claims.
(c) In what follows, let $M=R / \operatorname{Im} \varphi$. Determine $\operatorname{dim}_{\mathbb{Q}}(M)$, and find a \mathbb{Q}-basis for M.
(d) Let $I=\langle x, y\rangle \subset R$. Determine which elements $m \in M$ satisfy $I \cdot m=0$.
(e) Locate an R-module homomorphism $\psi: R \oplus R \rightarrow R$ such that (i) $e_{1}, e_{2} \notin \operatorname{ker} \psi$, and (ii) $R / \operatorname{Im} \psi$ is not a finite dimensional vector space over \mathbb{Q}.
(f) Determine whether $(R \oplus R) / \operatorname{ker} \varphi \cong R$ as R-modules.
(D4) Quotient modules. Fix a (commutative) ring R (with unity) and a (left) R-module M.
(a) Prove that if $R=\mathbb{Z}$ and $5 \in \operatorname{ann}(M)$, then M is ("naturally") a \mathbb{Z}_{5}-module.
(b) Given an ideal $I \subset R$, formulate a condition under which M is an R / I module.
(c) Given an ideal $I \subset R$, prove $I M$ is a submodule of M.
(d) Determine $\operatorname{ann}(M / I M)$. What can we conclude when combined with part (b)?
(e) Find a \mathbb{Z}_{6}-module with 4 elements. Hint: first find one with 2 elements.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Fix rings R and T, a ring homomorphism $\varphi: R \rightarrow T$, and a T-module M. Prove that M is ("naturally") an R-module via the action $r \cdot m=\varphi(r) m$.
(H2) Fix a ring R and an R-module M, and fix $m \in M$. Prove that there exists a unique R-module homomorphism $\varphi: R \rightarrow M$ satisfying $\varphi(1)=m$.
(H3) Let $I=\langle x, y\rangle \subset R=\mathbb{Q}[x, y]$, and fix an R-module M and elements $m, m^{\prime} \in M$.
(a) Determine the precise condition on m and m^{\prime} under which there exists an R-module homomorphism $\varphi: I \rightarrow M$ satisfying $\varphi(x)=m$ and $\varphi(y)=m^{\prime}$.
(b) Prove that when such a homomorphism φ exists, it is unique.
(H4) Determine whether each of the following statements is true or false. Prove your assertions.
(a) Fix a ring R. Any R-module homomorphism $R \oplus R \rightarrow R$ must have nontrivial kernel.
(b) Given any \mathbb{Z}-module M, there exists a unique way to extend the \mathbb{Z}-action on M to a \mathbb{Q}-action that makes M into a \mathbb{Q}-module.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Let $R=\mathbb{Q}[x, y]$, and let $I=\left\langle x^{3}, x y, y^{2}\right\rangle \subset R$. Locate free modules F_{0}, F_{1}, and F_{2} along with homomorphisms

$$
0 \longrightarrow F_{2} \xrightarrow{\varphi_{2}} F_{1} \xrightarrow{\varphi_{1}} F_{0} \xrightarrow{\varphi_{0}} R / I \longrightarrow 0
$$

such that φ_{0} is surjective, φ_{2} is injective, $\operatorname{ker} \varphi_{0}=\operatorname{Im} \varphi_{1}$, and $\operatorname{ker} \varphi_{1}=\operatorname{Im} \varphi_{2}$.

