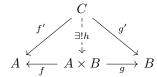
Fall 2021, Math 620: Week 15 Problem SetDue: Friday, December 10th, 2021Categories and Universal Properties

Discussion problems. The problems below should be worked on in class.

(D1) Products. Recall the product of two objects A and B in a category C is an object $A \times B$ together with morphisms $f: A \times B \to A$ and $g: A \times B \to B$ such that the following "universal property" is satisfied: for any object C in C with morphisms $f': C \to A$ and $g': C \to B$, there exists a unique morphism $h: C \to A \times B$ with $f' = f \circ h$ and $g' = g \circ h$ (we say the morphisms f' and g' "factor through" $A \times B$).



- (a) In the category Ab, prove that (categorical) products are simply Cartesian products.
- (b) Adjust your proof to argue that products in Set are Cartesian products.
- (c) Fix an index set \mathcal{I} and a collection of objects A_i for $i \in \mathcal{I}$ in a category \mathcal{C} . Give a definition of the product $\prod_{i \in \mathcal{I}} A_i$. Use both words and a commutative diagram (you may find it useful to have a separate diagram for each element of \mathcal{I}).
- (D2) Kernels. The kernel of a morphism $f: A \to B$ in a category $\mathcal C$ is an object K together with a morphism $g: K \to A$ satisfying $f \circ g = 0$, such that the following universal property holds: for any object K' and morphism $g': K' \to A$ with $f \circ g' = 0$, there exists a unique morphism $h: K' \to K$ such that $g \circ h = g'$.
 - (a) Draw the commutative diagram for kernels.
 - (b) Let $\varphi : \mathbb{Z} \to \mathbb{Z}_{12}$ denote the group homomorphism given by $\varphi(a) = [4a]_{12}$. Prove that $K = \ker \varphi$ with the inclusion map $g : K \hookrightarrow \mathbb{Z}$ satisfies the universal property above.
 - (c) Prove that every morphism in the category Ab has a (categorical) kernel that coincides with what we have been calling the "kernel" all semester.
- (D3) Duals. Given a universal object (e.g., kernels, products), the dual is obtained by reversing the directions of all of the arrows in the accompanying commutative diagram.
 - (a) Write the definition of *coproduct* (the categorical dual of the product) of two objects A and B in a category C. Denote this object by $A \coprod B$.
 - (b) In the category Ab, determine what familiar group $\mathbb{Z} \coprod \mathbb{Z}_6$ is.
 - (c) Demonstrate that in the category Ab, finite coproducts are simply finite products.
 - (d) Define

$$G = \{(a_1, a_2, \ldots) : a_i \in \mathbb{Z} \text{ and } a_i = 0 \text{ for all but finitely many } i\}.$$

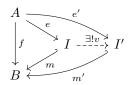
Argue that G is a subgroup of $\prod_{i=1}^{\infty} \mathbb{Z} = \{(a_1, a_2, \ldots) : a_i \in \mathbb{Z}\}.$

- (e) Demonstrate that $\prod_{i=1}^{\infty} \mathbb{Z}$ does **not** satisfy the universal property for $\coprod_{i=1}^{\infty} \mathbb{Z}$ in Ab. Hint: use the group G from the previous part.
- (f) Formulate and prove a conjecture for what objects are coproducts in Ab. Hint: where have we seen the group G before?

1

Homework problems. You must submit all homework problems in order to receive full credit.

- (H1) Given a category \mathcal{C} and a morphism $f:A\to B$, the *image* of f (if it exists) is an object I together with a monomorphism $m:I\to B$ such that
 - there exists a map $e: A \to I$ such that $m \circ e = f$; and
 - the following universal property is satisfied: for any object I', morphism $e': A \to I'$, and monomorphism $m': I' \to B$ satisfying the above requirements, there exists a unique morphism $v: I \to I'$ such that the following diagram commutes.



Prove that for any ring R in Slt, the category R-Mod has images.

- (H2) Prove that in any category C in which every morphism has a kernel (as defined in Problem (D1) from discussion), the morphism g must be a monomorphism. Be careful: morphisms might not be "functions" in general!
- (H3) Given a morphism $f: A \to B$ in a category C, its *cokernel* satisfies (as the name suggests) the dual universal property to that of the kernel.
 - (a) Write the full definition of a cokernel of a morphism $f: A \to B$ in a category \mathcal{C} . Be sure to include a diagram!
 - (b) Determine whether the category Ab has cokernels.
- (H4) Determine whether each of the following statements is true or false. Prove your assertions.
 - (a) The category Slt has kernels.
 - (b) The category Set has coproducts.