Fall 2022, Math 522: Week 2 Problem Set

Due: Friday, September 16th, 2022

Greatest Common Divisors and the Euclidean Algorithm

Discussion problems. The problems below should be worked on in class.
(D1) Proving the Euclidean algorithm yields greatest common divisors.
(a) Compare your answers to Preliminary Problem (P1). Then use the Euclidean algorithm to find $(522,402)$ and verify you get the same answer.
(b) Have 2 different members of your group each choose a 3-digit positive integer, with no common digits. Use the Euclidean algorithm to find their greatest common divisor.
(c) Try to locate 2-digit numbers $a, b \in \mathbb{Z}$ so that using the Euclidean algorithm to compute (a, b) takes as many steps as possible.
(d) For each of the following a and b, find $d=(a, b)$ with the Euclidean algorithm, then locate $x, y \in \mathbb{Z}$ with $a x+b y=d$.
(i) $a=15, b=12$
(ii) $a=63, b=12$
(iii) $a=138, b=63$
(iv) $a=522, b=402$
(e) Using your work in the previous part, devise a method to obtain x and y from the Euclidean algorithm (this is known as the extended Euclidean algorithm).
(f) Let $a, b \in \mathbb{Z}$ be arbitrary, and suppose applying the Euclidean algorithm to find $d=(a, b)$ takes exactly 4 steps. Write $q_{1}, q_{2}, q_{3}, q_{4}$ and $r_{1}, r_{2}, r_{3}, r_{4}$ for the quotient/remainder from each step (in particular, $r_{4}=0$ and $r_{3}=d$). Find a formula for $x, y \in \mathbb{Z}$ such that $a x+b y=d$ (your formula should be in terms of the q 's and r 's).
(g) Suppose in the previous part, the Euclidean algorithm took exactly 5 steps. Find an analogous formula for x and y. If the process were to take k steps, can you conjecture a closed form for x and y in terms of $q_{1}, q_{2}, \ldots, q_{k}$ and $r_{1}, r_{2}, \ldots, r_{k}$?

Homework problems. You must submit all homework problems in order to receive full credit.
Unless otherwise stated, $a, b, c, d, n \in \mathbb{Z}$ are arbitrary.
For this assigment only, do not use prime factorization in any of your arguments.
(H1) Use the Euclidean algorithm to find $d=\operatorname{gcd}(559,234)$. Then use the extended Euclidean algorithm to find $x, y \in \mathbb{Z}$ with $599 x+234 y=d$.
(H2) Prove that if $(a, b)=1$, then $\left(a, b^{n}\right)=1$ for all $a, b, n \in \mathbb{Z}$ with $n \geq 1$.
(H3) Fix $a, b, c \in \mathbb{Z}$. Prove the equation $a x+b y=c$ has integer solutions if and only if $(a, b) \mid c$.
(H4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If $\operatorname{gcd}(a, b)>1$ and $\operatorname{gcd}(a, c)>1$, then $\operatorname{gcd}(b, c)>1$.
(b) If $a \mid(b+c)$ and $(b, c)=1$, then $(a, b)=1$ and $(a, c)=1$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Prove that $\operatorname{gcd}(\operatorname{gcd}(a, b), c)=\operatorname{gcd}(a, \operatorname{gcd}(b, c))$ for all $a, b, c \in \mathbb{Z}$.

