Fall 2022, Math 522: Week 3 Problem Set Due: Friday, September 23rd, 2022The Fundamental Theorem of Arithmetic

Discussion problems. The problems below should be worked on in class.

(D1) Proving "uniqueness" in the Fundamental Theorem of Arithmetic.

(a) Below is a "proof" that there are infinitely many primes. Locate and correct the error. *Proof.* By way of contradiction, suppose there are only k primes p_1, \ldots, p_k . Let

 $a = p_1 \cdots p_k + 2.$

For each *i*, we have $p_i \mid p_1 \cdots p_k$, so $p_i \nmid a$. This means no prime number divide *a*, and thus *a* cannot be written as a product of primes. This contradicts the FTA. \Box

- (b) The following is a proof that if p is prime and $p \mid a_1 \cdots a_k$, then $p \mid a_i$ for some i. Write a new proof using induction on k (thus avoiding the shaky "Repeating this process"). *Proof.* By way of contradiction, suppose p is prime and $p \mid a_1 \cdots a_k$, but $p \nmid a_i$ for every i. Since $p \mid (a_1 \cdots a_{k-1})(a_k)$ and p is prime, either $p \mid a_1 \cdots a_{k-1}$ or $p \mid a_k$. By assumption, $p \nmid a_k$, so $p \mid a_1 \cdots a_{k-1}$. Repeating this process, we conclude $p \mid a_1a_2$. However, we assumed $p \nmid a_1$ and $p \nmid a_2$, which contradicts the fact that p is prime. \Box
- (c) Fill in the blanks the following proof that if $a \in \mathbb{Z}_{>1}$ satisfies

$$a = p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_r$$

for primes $p_1, \ldots, p_k, q_1, \ldots, q_r$, then k = r and, after possibly reordering the right hand side, we have $p_i = q_i$ for each *i* (this is the "uniqueness" part of the FTA). *Proof.* We proceed by induction on *a*. If a = 1, then necessarily $k = r = _$. For the inductive step, suppose $a \ge 2$ and that the above claim holds for every a' < a. Since $p_k \mid __$, by part (b) $p_k \mid q_i$ for some *i*. Up to reordering, we may assume $__$. Since p_k and q_r are both prime, $p_k = q_r$, and applying the inductive hypothesis to

$$a' = p_1 p_2 \cdots p_{k-1} = _$$

completes the proof.

- (d) Prove or provide a counterexample: if p is prime, $n \ge 1$, and $p^n \mid a^n$, then $p \mid a$.
- (e) If the hypothesis "p is prime" is dropped from the previous statement, does that change its truth value? Again, provide a proof or a counterexample.
- (D2) Prime Factorization and GCDs. The goal of this problem is to prove the following theorem.

Theorem. If $a = p_1^{r_1} \cdots p_k^{r_k}$ and $b = p_1^{t_1} \cdots p_k^{t_k}$ for some distinct primes p_1, \ldots, p_k with each $r_i, s_i \ge 0$, then $gcd(a, b) = p_1^{\min(r_1, t_1)} \cdots p_k^{\min(r_k, t_k)}$.

- (a) Given $a, b \in \mathbb{Z}$, is it possible that gcd(7a, 7b) = 91? Is it possible gcd(17a, 17b) = 19? What theorem from the beginning of Monday's class are you using here?
- (b) Let $a = 2^2 3^1 5^1$ and $b = 2^1 3^2 7^1$. Find (a, b), and verify that your answer is correct by finding *all* divisors of *a* and *b*. Also verify this matches the above theorem.
- (c) Prove that gcd(a, b) = 1 if and only if there is no prime p such that $p \mid a$ and $p \mid b$. Hint: remember that sometimes it is easier to prove the contrapositive of an implication!
- (d) Prove that $p_1^{\min(r_1,t_1)} \cdots p_k^{\min(r_k,t_k)}$ is a divisor of both *a* and *b*.
- (e) Use the above results to prove $gcd(a,b) = p_1^{\min(r_1,t_1)} \cdots p_k^{\min(r_k,t_k)}$.

Homework problems. You must submit *all* homework problems in order to receive full credit.

Unless otherwise stated, $a, b, c, d, n \in \mathbb{Z}$ are arbitrary.

- (H1) Prove $a \mid b$ if and only if $a^2 \mid b^2$.
- (H2) Let d = gcd(a, b). Use the fundamental theorem of arithmetic to prove that if $a \mid c$ and $b \mid c$, then $ab \mid cd$.
- (H3) Prove that if p > 3 is prime, then $p^2 + 2$ is composite. Hint: consider the possible remainders when dividing p by 3.
- (H4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) If p is prime, $p \mid a^2$, and $p \mid a + b^2$, then $p \mid b$.
 - (b) If $d = \gcd(a, b)$, then $d^2 = \gcd(a^2, b^2)$.
 - (c) If p > 2 is prime, then 3p + 2 is prime.