Fall 2022, Math 522: Week 3 Problem Set
 Due: Friday, September 23rd, 2022 The Fundamental Theorem of Arithmetic

Discussion problems. The problems below should be worked on in class.
(D1) Proving "uniqueness" in the Fundamental Theorem of Arithmetic.
(a) Below is a "proof" that there are infinitely many primes. Locate and correct the error. Proof. By way of contradiction, suppose there are only k primes p_{1}, \ldots, p_{k}. Let

$$
a=p_{1} \cdots p_{k}+2
$$

For each i, we have $p_{i} \mid p_{1} \cdots p_{k}$, so $p_{i} \nmid a$. This means no prime number divide a, and thus a cannot be written as a product of primes. This contradicts the FTA.
(b) The following is a proof that if p is prime and $p \mid a_{1} \cdots a_{k}$, then $p \mid a_{i}$ for some i. Write a new proof using induction on k (thus avoiding the shaky "Repeating this process").
Proof. By way of contradiction, suppose p is prime and $p \mid a_{1} \cdots a_{k}$, but $p \nmid a_{i}$ for every i. Since $p \mid\left(a_{1} \cdots a_{k-1}\right)\left(a_{k}\right)$ and p is prime, either $p \mid a_{1} \cdots a_{k-1}$ or $p \mid a_{k}$. By assumption, $p \nmid a_{k}$, so $p \mid a_{1} \cdots a_{k-1}$. Repeating this process, we conclude $p \mid a_{1} a_{2}$. However, we assumed $p \nmid a_{1}$ and $p \nmid a_{2}$, which contradicts the fact that p is prime.
(c) Fill in the blanks the following proof that if $a \in \mathbb{Z}_{\geq 1}$ satisfies

$$
a=p_{1} p_{2} \cdots p_{k}=q_{1} q_{2} \cdots q_{r}
$$

for primes $p_{1}, \ldots, p_{k}, q_{1}, \ldots q_{r}$, then $k=r$ and, after possibly reordering the right hand side, we have $p_{i}=q_{i}$ for each i (this is the "uniqueness" part of the FTA).
Proof. We proceed by induction on a. If $a=1$, then necessarily $k=r=\ldots$.
For the inductive step, suppose $a \geq 2$ and that the above claim holds for every $a^{\prime}<a$. Since $p_{k} \mid$ \qquad , by part (b) $p_{k} \mid q_{i}$ for some i. Up to reordering, we may assume \qquad . Since p_{k} and q_{r} are both prime, $p_{k}=q_{r}$, and applying the inductive hypothesis to

$$
a^{\prime}=p_{1} p_{2} \cdots p_{k-1}=
$$

\qquad
completes the proof.
(d) Prove or provide a counterexample: if p is prime, $n \geq 1$, and $p^{n} \mid a^{n}$, then $p \mid a$.
(e) If the hypothesis " p is prime" is dropped from the previous statement, does that change its truth value? Again, provide a proof or a counterexample.
(D2) Prime Factorization and $G C D s$. The goal of this problem is to prove the following theorem.
Theorem. If $a=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$ and $b=p_{1}^{t_{1}} \cdots p_{k}^{t_{k}}$ for some distinct primes p_{1}, \ldots, p_{k} with each $r_{i}, s_{i} \geq 0$, then $\operatorname{gcd}(a, b)=p_{1}^{\min \left(r_{1}, t_{1}\right)} \cdots p_{k}^{\min \left(r_{k}, t_{k}\right)}$.
(a) Given $a, b \in \mathbb{Z}$, is it possible that $\operatorname{gcd}(7 a, 7 b)=91$? Is it possible $\operatorname{gcd}(17 a, 17 b)=19$? What theorem from the beginning of Monday's class are you using here?
(b) Let $a=2^{2} 3^{1} 5^{1}$ and $b=2^{1} 3^{2} 7^{1}$. Find (a, b), and verify that your answer is correct by finding all divisors of a and b. Also verify this matches the above theorem.
(c) Prove that $\operatorname{gcd}(a, b)=1$ if and only if there is no prime p such that $p \mid a$ and $p \mid b$. Hint: remember that sometimes it is easier to prove the contrapositive of an implication!
(d) Prove that $p_{1}^{\min \left(r_{1}, t_{1}\right)} \cdots p_{k}^{\min \left(r_{k}, t_{k}\right)}$ is a divisor of both a and b.
(e) Use the above results to prove $\operatorname{gcd}(a, b)=p_{1}^{\min \left(r_{1}, t_{1}\right)} \cdots p_{k}^{\min \left(r_{k}, t_{k}\right)}$.

Homework problems. You must submit all homework problems in order to receive full credit.
Unless otherwise stated, $a, b, c, d, n \in \mathbb{Z}$ are arbitrary.
(H1) Prove $a \mid b$ if and only if $a^{2} \mid b^{2}$.
(H2) Let $d=\operatorname{gcd}(a, b)$. Use the fundamental theorem of arithmetic to prove that if $a \mid c$ and $b \mid c$, then $a b \mid c d$.
(H3) Prove that if $p>3$ is prime, then $p^{2}+2$ is composite. Hint: consider the possible remainders when dividing p by 3 .
(H4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If p is prime, $p \mid a^{2}$, and $p \mid a+b^{2}$, then $p \mid b$.
(b) If $d=\operatorname{gcd}(a, b)$, then $d^{2}=\operatorname{gcd}\left(a^{2}, b^{2}\right)$.
(c) If $p>2$ is prime, then $3 p+2$ is prime.

