Fall 2022, Math 522: Week 5 Problem Set Due: Friday, October 7th, 2022 Modular Arithmetic (Week 2)

Discussion problems. The problems below should be worked on in class.

- (D1) The orders of elements of \mathbb{Z}_n . The order of an element $[a]_n \in \mathbb{Z}_n$ is the smallest integer k such that adding $[a]_n$ to itself k times yields $[0]_n$, that is, $ka \equiv 0 \mod n$.
 - (a) Find the order of each element of \mathbb{Z}_{12} . Do the same for \mathbb{Z}_{10} .
 - (b) Conjecture a formula for the order of [a]_n in terms of a and n.
 Hint: use your answers from part (a) for inspiration. When in doubt, do more examples!
 - (c) Let k denote your conjectured order for $[a]_n$. Prove $[k]_n[a]_n = 0$.
 - (d) Let k denote your conjectured order for $[a]_n$, and suppose $[c]_n[a]_n = 0$. Prove $k \mid c$. Hint: how have we used the division algorithm to prove one integer divides another?
 - (e) Prove that your conjectured order formula holds.
 - (f) For which n does every nonzero $[a]_n$ have order n? Give a (short and sweet) proof.
- (D2) Euler's theorem. Fix $n \ge 1$, and let $s = \phi(n)$ denote the number of integers $i \in [1, n-1]$ with gcd(i, n) = 1 (this is known as the Euler totient function). The goal of this problem is to prove the following theorem.

Theorem (Euler's Theorem). If gcd(a, n) = 1, then $a^s \equiv 1 \mod n$.

- (a) Compare your answers to the prelim problem. Write the definition of *reduced residue* system at the top of the board, along with at least two examples.
- (b) Prove that if r₁,...,r_s is some reduced residue system for n and gcd(a, n) = 1, then ar₁,...,ar_s is also a reduced residue system for n.
 Hint: the "cancellation law" should come in handy somewhere in your proof.
- (c) What does part (b) tell you about the products $r_1 \cdots r_s$ and $(ar_1) \cdots (ar_s)$ modulo n?
- (d) Conclude that Euler's theorem holds.
- (e) Use Euler's theorem to prove Fermat's little theorem.

Homework problems. You must submit *all* homework problems in order to receive full credit.

Unless otherwise stated, $a, b, c, n, p \in \mathbb{Z}$ are arbitrary with p > 1 prime and $n \ge 2$.

- (H1) Determine how many primes p satisfy $n! + 2 \le p \le n! + n$. Prove your claim.
- (H2) Prove that $10 \nmid (n-1)! + 1$ for all $n \ge 1$. What does this tell you about the hypotheses for Wilson's theorem?
- (H3) Prove that if gcd(a, n) = gcd(a 1, n) = 1, then $1 + a + a^2 + \dots + a^{\phi(n)-1} \equiv 0 \mod n$.
- (H4) Prove that if p is prime, then $(a + b)^p \equiv a^p + b^p \mod p$ for every $a, b \in \mathbb{Z}$ (this is known as the *Freshmen's Dream*).

Note: you may **not** use the binomial theorem in this problem.

- (H5) Determine whether each of the following is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) If gcd(a, n) = 1 and $a \not\equiv 1 \mod n$, then the smallest positive integer b such that $a^b \equiv 1 \mod n$ is $b = \phi(n)$.
 - (b) If $n \ge 2$, then $(a+b)^n \equiv a^n + b^n \mod n$ for every $a, b \in \mathbb{Z}$.