Fall 2022, Math 522: Week 7 Problem Set
 Due: Friday, October 21st, 2022
 Arithmetic Functions

Discussion problems. The problems below should be worked on in class.
(D1) Formulas for $d(n)$ and $\sigma(n)$. Let $d(n)$ denote the number of positive divisors of n, and let $\sigma(n)$ denote the sum of the positive divisors of n.
(a) Find $d(n)$, and $\sigma(n)$ for $n=2,3, \ldots, 10$ and $n=42$.
(b) Find a formula for $d(p)$ and for $\sigma(p)$ when p is prime.
(c) Find a formula for $d\left(p^{r}\right)$ and $\sigma\left(p^{r}\right)$ when p is prime and $r \geq 1$. Express your formula for $\sigma\left(p^{r}\right)$ as a fraction with denominator $p-1$.
(d) We will prove in Problem (D2) (on Friday) that $d(a b)=d(a) d(b)$ and $\sigma(a b)=\sigma(a) \sigma(b)$ whenever $\operatorname{gcd}(a, b)=1$. Using only this fact and your formulas from part (c), find $d(n)$ and $\sigma(n)$ for $n=15,30$, and 36.
(e) Use the previous part and your work above to derive formulas for $d(n)$ and $\sigma(n)$ in terms of the prime factorization $n=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$. Be sure to state any assumptions about p_{1}, \ldots, p_{k} and r_{1}, \ldots, r_{k}.
(D2) Multiplicative functions. The goal for this problem is to prove that $d(n)$ and $\sigma(n)$ are multiplicative on relatively prime integers.
In what follows, let $D_{n}=\{d>0: d \mid n\}$ denote the set of positive divisors of n.
(a) Find D_{4}, D_{15}, and D_{60}.
(b) Given two subsets $A, B \subset \mathbb{Z}$, define $A \cdot B=\{a b: a \in A, b \in B\}$ as the set of products of an element of A by an element of B.
Find $D_{3} \cdot D_{5}$. Then find $D_{4} \cdot D_{15}$. What do you notice? How does this relate to $d(n)$ being multiplicative on relatively prime integers?
(c) Find $D_{4} \cdot D_{6}$. Locate n so that your result equals D_{n}. Is it true that $d(4) \cdot d(6)=d(n)$? How does this example differ from part (b)?
(d) Formulate a conjecture for what set $D_{a} \cdot D_{b}$ coincides with.
(e) Prove that if $d \mid a b$, then $d=a^{\prime} b^{\prime}$ for some $a^{\prime} \mid a$ and $b^{\prime} \mid b$. Use this to prove your conjecture in the previous part.
(f) Argue that in part (e), if $\operatorname{gcd}(a, b)=1$, then the integers a^{\prime} and b^{\prime} are unique. Is this true if the hypothesis $\operatorname{gcd}(a, b)=1$ is dropped?
(g) Use parts (e) and (f) to conclude that if $\operatorname{gcd}(a, b)=1$, then $d(a b)=d(a) d(b)$.
(h) Suppose $\operatorname{gcd}(a, b)=1$ and that $D_{a}=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $D_{b}=\left\{b_{1}, b_{2}\right\}$. Find $\sigma(a), \sigma(b)$, and $\sigma(a b)$. Why does $\sigma(a b)=\sigma(a) \sigma(b)$ in this case?
(i) Argue that if $\operatorname{gcd}(a, b)=1$, then $\sigma(a b)=\sigma(a) \sigma(b)$.

Homework problems. You must submit all homework problems in order to receive full credit.
Unless otherwise stated, $a, b, c, n, p \in \mathbb{Z}$ are arbitrary with $p>1$ prime and $n \geq 2$.
(H1) Find $\phi(441)$ without using a calculator.
Hint: $441=3^{2} 7^{2}$.
(H2) Locate infinitely many integers n such that $10 \mid \phi(n)$.
(H3) Prove that every $n \geq 1$ satisfies $d(n)<2 \sqrt{n}$.
(H4) (a) Prove that $n \mid(\phi(n) \sigma(n)+1)$ if n is prime.
(b) Prove that $n \nmid(\phi(n) \sigma(n)+1)$ if $p^{2} \mid n$ for some prime p.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) In this problem, we will prove that $\phi(n)$ is multiplicative on relatively prime integers, as was shown for both $d(n)$ and $\sigma(n)$ in discussion.
Let $\mathbb{Z}_{n}^{*}=\left\{[a]_{n}: \operatorname{gcd}(a, n)=1\right\}$ denote the set of units in \mathbb{Z}_{n}, and consider the function

$$
\begin{aligned}
& f: \mathbb{Z}_{n m}^{*} \longrightarrow \mathbb{Z}_{n}^{*} \times \mathbb{Z}_{m}^{*} \\
& \quad[a]_{n m} \longmapsto\left([a]_{n},[a]_{m}\right) .
\end{aligned}
$$

(a) Prove that f is well-defined, that is, if $[a]_{n m}=[b]_{n m}$, then $f\left([a]_{n m}\right)=f\left([b]_{n m}\right)$.
(b) Prove that if $\operatorname{gcd}(n, m)=1$, then f is one-to-one.
(c) Use the Chinese Remainder Theorem to prove that if $\operatorname{gcd}(n, m)=1$, then f is onto.
(d) Use the previous parts to conclude that if $\operatorname{gcd}(n, m)=1$, then $\phi(n m)=\phi(n) \phi(m)$.

