Fall 2022, Math 522: Week 7 Problem Set Due: Friday, October 21st, 2022 Arithmetic Functions

Discussion problems. The problems below should be worked on in class.

- (D1) Formulas for d(n) and $\sigma(n)$. Let d(n) denote the number of positive divisors of n, and let $\sigma(n)$ denote the sum of the positive divisors of n.
 - (a) Find d(n), and $\sigma(n)$ for $n = 2, 3, \ldots, 10$ and n = 42.
 - (b) Find a formula for d(p) and for $\sigma(p)$ when p is prime.
 - (c) Find a formula for $d(p^r)$ and $\sigma(p^r)$ when p is prime and $r \ge 1$. Express your formula for $\sigma(p^r)$ as a fraction with denominator p-1.
 - (d) We will prove in Problem (D2) (on Friday) that d(ab) = d(a)d(b) and σ(ab) = σ(a)σ(b) whenever gcd(a,b) = 1. Using **only** this fact and your formulas from part (c), find d(n) and σ(n) for n = 15, 30, and 36.
 - (e) Use the previous part and your work above to derive formulas for d(n) and $\sigma(n)$ in terms of the prime factorization $n = p_1^{r_1} \cdots p_k^{r_k}$. Be sure to state any assumptions about p_1, \ldots, p_k and r_1, \ldots, r_k .
- (D2) Multiplicative functions. The goal for this problem is to prove that d(n) and $\sigma(n)$ are multiplicative on relatively prime integers.

In what follows, let $D_n = \{d > 0 : d \mid n\}$ denote the set of positive divisors of n.

- (a) Find D_4 , D_{15} , and D_{60} .
- (b) Given two subsets A, B ⊂ Z, define A · B = {ab : a ∈ A, b ∈ B} as the set of products of an element of A by an element of B.
 Find D₃ · D₅. Then find D₄ · D₁₅. What do you notice? How does this relate to d(n) being multiplicative on relatively prime integers?
- (c) Find $D_4 \cdot D_6$. Locate *n* so that your result equals D_n . Is it true that $d(4) \cdot d(6) = d(n)$? How does this example differ from part (b)?
- (d) Formulate a conjecture for what set $D_a \cdot D_b$ coincides with.
- (e) Prove that if $d \mid ab$, then d = a'b' for some $a' \mid a$ and $b' \mid b$. Use this to prove your conjecture in the previous part.
- (f) Argue that in part (e), if gcd(a, b) = 1, then the integers a' and b' are **unique**. Is this true if the hypothesis gcd(a, b) = 1 is dropped?
- (g) Use parts (e) and (f) to conclude that if gcd(a,b) = 1, then d(ab) = d(a)d(b).
- (h) Suppose gcd(a, b) = 1 and that $D_a = \{a_1, a_2, a_3\}$ and $D_b = \{b_1, b_2\}$. Find $\sigma(a), \sigma(b)$, and $\sigma(ab)$. Why does $\sigma(ab) = \sigma(a)\sigma(b)$ in this case?
- (i) Argue that if gcd(a, b) = 1, then $\sigma(ab) = \sigma(a)\sigma(b)$.

Homework problems. You must submit *all* homework problems in order to receive full credit. Unless otherwise stated, $a, b, c, n, p \in \mathbb{Z}$ are arbitrary with p > 1 prime and $n \ge 2$.

- (H1) Find $\phi(441)$ without using a calculator. Hint: $441 = 3^2 7^2$.
- (H2) Locate infinitely many integers n such that $10 \mid \phi(n)$.
- (H3) Prove that every $n \ge 1$ satisfies $d(n) < 2\sqrt{n}$.
- (H4) (a) Prove that n | (φ(n)σ(n) + 1) if n is prime.
 (b) Prove that n ∤ (φ(n)σ(n) + 1) if p² | n for some prime p.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) In this problem, we will prove that $\phi(n)$ is multiplicative on relatively prime integers, as was shown for both d(n) and $\sigma(n)$ in discussion.

Let $\mathbb{Z}_n^* = \{[a]_n : \gcd(a, n) = 1\}$ denote the set of units in \mathbb{Z}_n , and consider the function

$$f: \mathbb{Z}_{nm}^* \longrightarrow \mathbb{Z}_n^* \times \mathbb{Z}_m^*$$
$$[a]_{nm} \longmapsto ([a]_n, [a]_m).$$

- (a) Prove that f is well-defined, that is, if $[a]_{nm} = [b]_{nm}$, then $f([a]_{nm}) = f([b]_{nm})$.
- (b) Prove that if gcd(n, m) = 1, then f is one-to-one.
- (c) Use the Chinese Remainder Theorem to prove that if gcd(n,m) = 1, then f is onto.
- (d) Use the previous parts to conclude that if gcd(n,m) = 1, then $\phi(nm) = \phi(n)\phi(m)$.