
Fall 2022, Math 522: Week 9 Problem Set
Due: Monday, November 7th, 2022

Primitive Roots

Discussion problems. The problems below should be worked on in class.

(D1) Existence of primitive roots. The goal of this problem is to prove parts of the following.

Theorem. There exists a root modulo n if and only if n = 2, n = 4, n = pr for some odd
prime p, or n = 2pr for some odd prime p.

(a) Verify the theorem for n = 2, 4, 8, 10, 15.

Hint: divide and conquer within your group!

(b) Complete the following statement so that it is equivalent to the above theorem.

“There are no primitive roots modulo n if and only if n = 2k for k ≥ 3, or n is divisible
by two distinct odd primes, or .”

(c) Use induction on k ≥ 3 to prove that if a is odd, then

a2
k−2

≡ 1 mod 2k.

(d) Use the previous part to prove if n = 2k with k ≥ 3, then the theorem holds.

(e) It turns out that if gcd(m,n) = 1 and we have ak ≡ 1 mod n and a` ≡ 1 mod m, then

alcm(k,j) ≡ 1 mod nm,

(we will not be proving this today). Using this fact, if gcd(a, 91) = 1, what is the
largest possible multiplicative order of a modulo 91?

(f) Prove that if m,n ≥ 3, then gcd(φ((m), φ(n)) > 1.

(g) Use the previous 2 parts to prove the theorem holds if n is divisible by 2 odd primes.

(D2) Counting primitive roots. Fix n ≥ 2.

(a) Find the number of primitive roots in Z6, Z7, and Z9.

Hint: divide and conquer within your group!

(b) In what follows, let N = φ(n), and let

Z∗
n = {[a]n ∈ Zn : gcd(a, n) = 1}.

Verify that Z∗
n is closed under multiplication and that |Z∗

n| = N .

(c) Let α denote a fixed primitive root modulo n. Consider the map

f : Z∗
n −→ ZN

[αb]n 7−→ [b]N

Write explicitly where f sends every element of Z∗
n in the special case n = 9 and α = 2.

For example, f([2]9) = [1]6 and f([4]9) = f([22]9) = [2]6.

(d) Verify that f is well-defined (that is, if [αb]n = [αc]n, then b ≡ c mod N).

Hint: use a lemma from Monday’s class.

(e) Prove that f is one-to-one and onto.

Hint: prove f is one-to-one, then argue |Z∗
n| = |ZN | to conclude f must also be onto.

(f) Prove that f([αb][αc]) = f([αb]) + f([αc]) for any b, c ∈ Z.

(g) Prove that αb is a primitive root modulo n if and only if [b]N has (additive) order N
(that is, if and only if gcd(b,N) = 1).

(h) Find a formula in terms of n for the number of primitive roots modulo n.
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Homework problems. You must submit all homework problems in order to receive full credit.

Unless otherwise stated, a, b, c, n, p ∈ Z are arbitrary with p > 1 prime and n ≥ 2.

(H1) Find all primitive roots modulo 14.

(H2) Determine the number of integers n ≤ 1000 for which there is a primitive root modulo n.

Hint: there are 168 primes less than 1000, of which 95 are less than 500.

(H3) Determine which integers n have a unique primitive root modulo n.

(H4) Suppose p is prime, a is a primitive root modulo p, and k | (p − 1). Find the number of
incongruent solutions modulo p to

xk ≡ a mod p.

(H5) (a) Locate 4 primes p for which
x2 ≡ −1 mod p

has an integer solution, and 4 primes for which it has no solutions.

(b) Determine for which primes p the equation

x2 ≡ −1 mod p

has an integer solution.

Note: your answer should be an “if and only if” characterization, with a proof!
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