Fall 2022, Math 522: Week 12 Problem Set
 Due: Friday, December 2nd, 2022
 Quadratic Residues

Discussion problems. The problems below should be worked on in class.
(D1) Using the reciprocity law. Recall that for distinct primes p and q, we have

$$
\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)
$$

unless $p \equiv q \equiv 3 \bmod 4$, in which case $\left(\frac{p}{q}\right)=-\left(\frac{q}{p}\right)$.
(a) Using the piecewise formula for $\left(\frac{2}{p}\right)$ from class, prove that

$$
\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}
$$

(b) Find a formula for $\left(\frac{-1}{p}\right)$ in the spirit of part (a).
(c) Using the quadratic reciprocity law, prove

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1) / 4}
$$

for any distinct odd primes p and q.
(D2) Extending the use of Legendre symbols. We will prove the following theorem.
Theorem. If p is an odd prime and $p \nmid a$, then

$$
x^{2} \equiv a \bmod p^{k}
$$

has a solution if and only if $\left(\frac{a}{p}\right)=1$.
(a) Use the above theorem to determine if $x^{2} \equiv 22 \bmod 81$ has a solution.
(b) Argue that if $x^{2} \equiv a \bmod p^{k}$, then $x^{2} \equiv a \bmod p$. Conclude the forward direction.
(c) For the backward direction, we proceed by induction on k. Prove the base case $k=1$.
(d) Now, assume $x^{2} \equiv a \bmod p^{k}$ (the inductive hypothesis). Argue that there exist $y, m, r \in \mathbb{Z}$ such that $x^{2}=a+m p^{k}$ and $x y=1+r p$.
(e) Argue that $\left(x-\frac{1}{2} m y(p+1) p^{k}\right)^{2} \equiv a \bmod p^{k+1}$.

Hint: start with the left hand side, distribute, and simplify (modulo p^{k+1}) until the right hand side is obtained.
This part requires several steps of algebra, so plan your boardspace accordingly.
(f) Conclude the theorem holds.

Homework problems. You must submit all homework problems in order to receive full credit.
Unless otherwise stated, $a, b, c, n, p \in \mathbb{Z}$ are arbitrary with $p>1$ prime and $n \geq 2$.
(H1) Determine whether 70 is a quadratic residue modulo 101 without using a calculator.
Hint: use the property $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$ of Legendre symbols and the quadratic reciprocity law to your advantage to compute $\left(\frac{70}{101}\right)$.
(H2) Determine whether 1823 is a quadratic residue modulo 83521 without using a calculator. Hint: $83521=17^{4}$.
(H3) Prove that if p is an odd prime, then

$$
\left(\frac{3}{p}\right)=\left\{\begin{aligned}
1 & \text { if } p \equiv 1,11 \bmod 12 \\
-1 & \text { if } p \equiv 5,7 \bmod 12
\end{aligned}\right.
$$

(H4) Determine whether each of the following is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) Given a and n with $n \geq 2$, the equation

$$
x^{2} \equiv a \bmod n
$$

has at most 2 incongruent solutions for x modulo n.
(b) If p and q are odd primes and $\operatorname{gcd}(a, p q)=1$, then

$$
x^{2} \equiv a \bmod p q
$$

has a solution if and only if $\left(\frac{a}{p}\right)=1$ and $\left(\frac{a}{q}\right)=1$

