Fall 2022, Math 522: Week 14 Problem Set Polynomial Arithmetic

Discussion problems. The problems below should be worked on in class.

(D1) Polynomial long division.

- (a) Divide $a(x) = x^4 + x^3 + 2x^2 + x + 1$ by $b(x) = x^2 + 1$ over \mathbb{Q} .
- (b) Divide $a(x) = 2x^5 x^4 + 3x^3 + 2x^2 + x + 1$ by $b(x) = 2x^2 + x + 1$ over \mathbb{Q} .
- (c) Find gcd(84, 32) using the Euclidean algorithm. Note: this is a week 2 question!
- (d) Use the Euclidean algorithm to find the greatest common divisor (over \mathbb{Q}) of

 $f(x) = x^4 - x^3 - 2x - 4$ and $g(x) = x^4 - 2x^3 + 3x^2 - 4x + 2$.

Remember: the greatest common divisor of two polynomials must be monic!

- (D2) Similarities between F[x] and \mathbb{Z} . In what follows, assume $F = \mathbb{Q}$, \mathbb{R} , or \mathbb{C} .
 - (a) Below is a (correct!) proof that if $a, b, c \in \mathbb{Z}$ with $a \mid bc$ and gcd(a, b) = 1, then $a \mid c$. Copy it onto the board. Then, prove that if $a(x), b(x), c(x) \in F[x]$ with $a(x) \mid b(x)c(x)$ and gcd(a(x), b(x)) = 1, then $a(x) \mid c(x)$.

Proof. Since $a \mid bc$ and gcd(a, b) = 1, there exist $m \in \mathbb{Z}$ and $x, y \in \mathbb{Z}$ satisfying am = bc and ax + by = 1. As such,

$$c = acx + bcy = acx + amy = a(cx + my),$$

so $a \mid c$.

(b) Fill in the gaps in the proof that if $a, b, c \in \mathbb{Z}$ with c > 0, then gcd(ca, cb) = c gcd(a, b). Identify where the hypothesis c > 0 is used.

Proof. Let d = gcd(a, b), so a = md and b = nd for some $m, n \in \mathbb{Z}$. This means ______ and _____, so $cd \mid ca$ and $cd \mid cb$. Moreover, ax + by = d for some $x, y \in \mathbb{Z}$, so ______, meaning cd = gcd(ca, cb).

- (c) State and prove an analogous result to part (b) for elements of F[x]. **Remember:** the greatest common divisor of two polynomials must be monic!
- (d) Complete the following proof that if $a(x), b(x) \in F[x]$ satisfy $a(x) \mid b(x)$ and $b(x) \mid a(x)$, then b(x) = Ca(x) for some $C \in F$.

Proof. Since a(x) | b(x), we have b(x) = a(x)f(x) for some $f(x) \in F[x]$, and since b(x) | a(x), we have _____. This means

$$\deg b(x) = \deg f(x) + \deg a(x) \ge \deg a(x) = \underline{\qquad} \ge \deg b(x),$$

so deg b(x) = deg and deg f(x) = 0. Choosing C = completes the proof.