Fall 2022, Math 522: Week 14 Problem Set Polynomial Arithmetic

Discussion problems. The problems below should be worked on in class.
(D1) Polynomial long division.
(a) Divide $a(x)=x^{4}+x^{3}+2 x^{2}+x+1$ by $b(x)=x^{2}+1$ over \mathbb{Q}.
(b) Divide $a(x)=2 x^{5}-x^{4}+3 x^{3}+2 x^{2}+x+1$ by $b(x)=2 x^{2}+x+1$ over \mathbb{Q}.
(c) Find $\operatorname{gcd}(84,32)$ using the Euclidean algorithm. Note: this is a week 2 question!
(d) Use the Euclidean algorithm to find the greatest common divisor (over \mathbb{Q}) of

$$
f(x)=x^{4}-x^{3}-2 x-4 \quad \text { and } \quad g(x)=x^{4}-2 x^{3}+3 x^{2}-4 x+2
$$

Remember: the greatest common divisor of two polynomials must be monic!
(D2) Similarities between $F[x]$ and \mathbb{Z}. In what follows, assume $F=\mathbb{Q}, \mathbb{R}$, or \mathbb{C}.
(a) Below is a (correct!) proof that if $a, b, c \in \mathbb{Z}$ with $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$. Copy it onto the board. Then, prove that if $a(x), b(x), c(x) \in F[x]$ with $a(x) \mid b(x) c(x)$ and $\operatorname{gcd}(a(x), b(x))=1$, then $a(x) \mid c(x)$.

Proof. Since $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, there exist $m \in \mathbb{Z}$ and $x, y \in \mathbb{Z}$ satsifying $a m=b c$ and $a x+b y=1$. As such,

$$
c=a c x+b c y=a c x+a m y=a(c x+m y)
$$

so $a \mid c$.
(b) Fill in the gaps in the proof that if $a, b, c \in \mathbb{Z}$ with $c>0$, then $\operatorname{gcd}(c a, c b)=c \operatorname{gcd}(a, b)$. Identify where the hypothesis $c>0$ is used.

Proof. Let $d=\operatorname{gcd}(a, b)$, so $a=m d$ and $b=n d$ for some $m, n \in \mathbb{Z}$. This means
\qquad and \qquad , so $c d \mid c a$ and $c d \mid c b$. Moreover, $a x+b y=d$ for some $x, y \in \mathbb{Z}$, So \qquad , meaning $c d=\operatorname{gcd}(c a, c b)$.
(c) State and prove an analogous result to part (b) for elements of $F[x]$.

Remember: the greatest common divisor of two polynomials must be monic!
(d) Complete the following proof that if $a(x), b(x) \in F[x]$ satisfy $a(x) \mid b(x)$ and $b(x) \mid a(x)$, then $b(x)=C a(x)$ for some $C \in F$.

Proof. Since $a(x) \mid b(x)$, we have $b(x)=a(x) f(x)$ for some $f(x) \in F[x]$, and since $b(x) \mid a(x)$, we have \qquad . This means

$$
\operatorname{deg} b(x)=\operatorname{deg} f(x)+\operatorname{deg} a(x) \geq \operatorname{deg} a(x)=_\operatorname{deg} b(x)
$$

so $\operatorname{deg} b(x)=\operatorname{deg}$ \qquad and $\operatorname{deg} f(x)=0$. Choosing $C=$ \qquad completes the proof.

