Fall 2022, Math 522: Week 15 Problem Set Due: Monday, December 12th, 2022 Cyclotomic Polynomials

Discussion problems. The problems below should be worked on in class.

- (D1) Finding cyclotomic polynomials. Factor $x^n 1$ as a product of cyclotomic polynomials for each of the following values of n. Identify each factor as $\Phi_d(x)$ for some $d \mid n$. Hint: you may find the following formulas useful.
 - $a^{2} 1 = (a + 1)(a 1),$ $a^{3} 1 = (a 1)(a^{2} + a + 1),$ $a^{3} + 1 = (a + 1)(a^{2} a + 1)$
 - (a) n = 3, n = 9, and n = 16.
 - (b) n = 18 (hint: $\Phi_{18}(x)$ has 3 nonzero terms)
 - (c) n = 24 (hint: $\Phi_{24}(x)$ has 3 nonzero terms)
- (D2) Some general formulas.
 - (a) Find $\Phi_p(x)$ for p prime.
 - (b) Find $\Phi_n(x)$ when $n = 2^k$ for some $k \ge 1$. Prove your formula holds. Hint: use induction on k.
 - (c) Compute $\Phi_n(-1)$ for each odd $n \leq 10$.
 - (d) Conjecture and prove a general formula for $\Phi_n(-1)$ when n > 1 is odd.
 - (e) Find $\Phi_n(x)$ when $n = 3^k$ for some $k \ge 1$. Prove your formula holds.
- (D3) *Dirichlet's Theorem.* The goal of this problem is to use cyclotomic polynomials to prove the following special case of Dirichlet's theorem.

Theorem. For each $n \ge 2$, there exist infinitely many primes equivalent to 1 modulo n.

- (a) Let $f(x) = \Phi_1(x)\Phi_2(x)\cdots\Phi_{n-1}(x)$. Argue that f(x) and $\Phi_n(x)$ are coprime in $\mathbb{Q}[x]$. Hint: consider the roots of f(x) and $\Phi_n(x)$.
- (b) Conclude $a(x)f(x) + b(x)\Phi_n(x) = 1$ for some $a(x), b(x) \in \mathbb{Q}[x]$.
- (c) Conclude $A(x)f(x) + B(x)\Phi_n(x) = N$ for some $N \in \mathbb{Z}_{\geq 1}$ and $A(x), B(x) \in \mathbb{Z}[x]$.
- (d) Fill in the blanks in the proof of the following lemma.

Lemma. If p > N is prime and $p \mid \Phi_n(b)$ for some $b \in \mathbb{Z}$, then $p \equiv 1 \mod n$.

Proof. Suppose $p \mid \Phi_n(b)$ for some $b \in \mathbb{Z}$. Since $\Phi_n(x) \mid _$, we must have $p \mid (b^n - 1)$, and thus $b^n \equiv 1 \mod p$. We claim b has multiplicative order n modulo p. Indeed, if $b^k \equiv 1 \mod p$ for some k < n, then $p \mid \Phi_d(b)$ for some $d \mid _$, meaning

$$A(b)f(b) + B(b)\Phi_n(b) = _$$

is a multiple of p, which is impossible since p > N by assumption. Having now proven b has multiplicative order n modulo p, we must have $n \mid ___$, which implies $p \equiv 1 \mod n$, as desired.

- (e) Having completed the above setup, we now give the main argument of the proof. Suppose p_1, \ldots, p_k are all the primes in $[1]_n$. Let $c = N! p_1 \cdots p_k$. Argue that there exists $M \in \mathbb{Z}$ large enough that $\Phi_n(Mc) > 1$. Hint: what kind of function is $\Phi_n(x)$?
- (f) Argue that $\Phi_n(Mc)$ must be coprime to c.
- (g) Use the lemma and the previous part to argue that $\Phi_n(Mc)$ has no prime factors.

Homework problems. You must submit *all* homework problems in order to receive full credit.

Unless otherwise stated, $a, b, c, n, p \in \mathbb{Z}$ are arbitrary with p > 1 prime and $n \ge 2$.

- (H1) Factor $x^{20} 1$ as a product of cyclotomic polynomials. Identify each factor as $\Phi_d(x)$ for some $d \mid 20$.
- (H2) Show that if $n \ge 3$ is odd, then $\Phi_{2n}(x) = \Phi_n(-x)$.
- (H3) Let $N = \Phi(n)$. Prove that the coefficients of $\Phi_n(x)$ are symmetric (that is, if we write

$$\Phi_n(x) = a_N x^N + a_{N-1} x^{N-1} + \dots + a_1 x + a_0,$$

then $a_i = a_{N-i}$ for each i).

Hint: start by showing that $x^N \Phi_n(1/x)$ (i) is a polynomial, (ii) has the same coefficients as $\Phi_n(x)$ but in reverse order, and (iii) has the same complex roots as $\Phi_n(x)$.

- (H4) Find a formula for $\Phi_n(1)$ in terms of n. Prove your formula holds. Hint: your formula will likely depend on how many distinct prime factors n has.
- (H5) Determine whether each of the following is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) For every $n \ge 3$, we have $\Phi_{2n}(x) = \Phi_n(-x)$.
 - (b) Every complex number on the unit circle in the complex plane is a root of some cyclotomic polynomial.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Find a formula for $\Phi_n(-1)$ in terms of n.