Fall 2022, Math 522: Week 15 Problem Set
 Due: Monday, December 12th, 2022
 Cyclotomic Polynomials

Discussion problems. The problems below should be worked on in class.
(D1) Finding cyclotomic polynomials. Factor $x^{n}-1$ as a product of cyclotomic polynomials for each of the following values of n. Identify each factor as $\Phi_{d}(x)$ for some $d \mid n$.
Hint: you may find the following formulas useful.
$a^{2}-1=(a+1)(a-1), \quad a^{3}-1=(a-1)\left(a^{2}+a+1\right), \quad a^{3}+1=(a+1)\left(a^{2}-a+1\right)$
(a) $n=3, n=9$, and $n=16$.
(b) $n=18$ (hint: $\Phi_{18}(x)$ has 3 nonzero terms)
(c) $n=24$ (hint: $\Phi_{24}(x)$ has 3 nonzero terms)
(D2) Some general formulas.
(a) Find $\Phi_{p}(x)$ for p prime.
(b) Find $\Phi_{n}(x)$ when $n=2^{k}$ for some $k \geq 1$. Prove your formula holds.

Hint: use induction on k.
(c) Compute $\Phi_{n}(-1)$ for each odd $n \leq 10$.
(d) Conjecture and prove a general formula for $\Phi_{n}(-1)$ when $n>1$ is odd.
(e) Find $\Phi_{n}(x)$ when $n=3^{k}$ for some $k \geq 1$. Prove your formula holds.
(D3) Dirichlet's Theorem. The goal of this problem is to use cyclotomic polynomials to prove the following special case of Dirichlet's theorem.
Theorem. For each $n \geq 2$, there exist infinitely many primes equivalent to 1 modulo n.
(a) Let $f(x)=\Phi_{1}(x) \Phi_{2}(x) \cdots \Phi_{n-1}(x)$. Argue that $f(x)$ and $\Phi_{n}(x)$ are coprime in $\mathbb{Q}[x]$. Hint: consider the roots of $f(x)$ and $\Phi_{n}(x)$.
(b) Conclude $a(x) f(x)+b(x) \Phi_{n}(x)=1$ for some $a(x), b(x) \in \mathbb{Q}[x]$.
(c) Conclude $A(x) f(x)+B(x) \Phi_{n}(x)=N$ for some $N \in \mathbb{Z}_{\geq 1}$ and $A(x), B(x) \in \mathbb{Z}[x]$.
(d) Fill in the blanks in the proof of the following lemma.

Lemma. If $p>N$ is prime and $p \mid \Phi_{n}(b)$ for some $b \in \mathbb{Z}$, then $p \equiv 1 \bmod n$.
Proof. Suppose $p \mid \Phi_{n}(b)$ for some $b \in \mathbb{Z}$. Since $\Phi_{n}(x) \mid$ \qquad , we must have $p \mid\left(b^{n}-1\right)$, and thus $b^{n} \equiv 1 \bmod p$. We claim b has multiplicative order n modulo p. Indeed, if $b^{k} \equiv 1 \bmod p$ for some $k<n$, then $p \mid \Phi_{d}(b)$ for some $d \mid$ \qquad , meaning

$$
A(b) f(b)+B(b) \Phi_{n}(b)=
$$

\qquad
is a multiple of p, which is impossible since $p>N$ by assumption.
Having now proven b has multiplicative order n modulo p, we must have $n \mid$ \qquad which implies $p \equiv 1 \bmod n$, as desired.
(e) Having completed the above setup, we now give the main argument of the proof. Suppose p_{1}, \ldots, p_{k} are all the primes in $[1]_{n}$. Let $c=N!p_{1} \cdots p_{k}$. Argue that there exists $M \in \mathbb{Z}$ large enough that $\Phi_{n}(M c)>1$.
Hint: what kind of function is $\Phi_{n}(x)$?
(f) Argue that $\Phi_{n}(M c)$ must be coprime to c.
(g) Use the lemma and the previous part to argue that $\Phi_{n}(M c)$ has no prime factors.

Homework problems. You must submit all homework problems in order to receive full credit.
Unless otherwise stated, $a, b, c, n, p \in \mathbb{Z}$ are arbitrary with $p>1$ prime and $n \geq 2$.
(H1) Factor $x^{20}-1$ as a product of cyclotomic polynomials. Identify each factor as $\Phi_{d}(x)$ for some $d \mid 20$.
(H2) Show that if $n \geq 3$ is odd, then $\Phi_{2 n}(x)=\Phi_{n}(-x)$.
(H3) Let $N=\Phi(n)$. Prove that the coefficients of $\Phi_{n}(x)$ are symmetric (that is, if we write

$$
\Phi_{n}(x)=a_{N} x^{N}+a_{N-1} x^{N-1}+\cdots+a_{1} x+a_{0}
$$

then $a_{i}=a_{N-i}$ for each i).
Hint: start by showing that $x^{N} \Phi_{n}(1 / x)$ (i) is a polynomial, (ii) has the same coefficients as $\Phi_{n}(x)$ but in reverse order, and (iii) has the same complex roots as $\Phi_{n}(x)$.
(H4) Find a formula for $\Phi_{n}(1)$ in terms of n. Prove your formula holds.
Hint: your formula will likely depend on how many distinct prime factors n has.
(H5) Determine whether each of the following is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) For every $n \geq 3$, we have $\Phi_{2 n}(x)=\Phi_{n}(-x)$.
(b) Every complex number on the unit circle in the complex plane is a root of some cyclotomic polynomial.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Find a formula for $\Phi_{n}(-1)$ in terms of n.

