Fall 2023, Math 320: Week 0 Problem Set
 Due: Thursday, August 31st, 2023
 Proof Writing Review

Discussion problems. The problems below should be worked on in class.
(D1) (a) Consider the following statement.
"If $a+b$ and $a b$ are both even, then a and b are both even."
Locate the error in the following proof of the statement. Then write a correct proof.
Proof. We prove the contrapositive of the statement. Suppose it is not the case that a and b are both even. This means a and b are both odd. Necessarily, $a+b$ is even, but $a b$ is odd. As such, $a+b$ and $a b$ are not both even. This completes the proof.
(b) Determine whether each of the following statements is true or false. Prove your claims.
(i) The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=9 x^{2}-6 x+1$ is injective (one-to-one).
(ii) The function $f: \mathbb{Z} \rightarrow \mathbb{R}$ given by $f(x)=9 x^{2}-6 x+1$ is injective (one-to-one).
(c) Let $D=\{(a, b): a, b \in \mathbb{Z}\}$, and define a relation \sim on D with $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ whenever $a \leq a^{\prime}$ and $b \leq b^{\prime}$. Is \sim reflexive? Is \sim symmetric? Is \sim transitive? Prove your claims.
(D2) (a) Fill in the blanks in the following proof that for every $n \geq 1$,

$$
1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

Proof. We proceed by induction on n.
Base case: $n=1$. We obtain $1^{2}=_=\frac{1(2)(3)}{6}$, as expected.
Inductive step: assuming $n \geq 1$ and

$$
工=\frac{n(n+1)(2 n+1)}{6},
$$

we wish to show

$$
1^{2}+2^{2}+\cdots+n^{2}+(n+1)^{2}=
$$

\qquad .

To this end, we see that

$$
1^{2}+2^{2}+\cdots+n^{2}+(n+1)^{2}=
$$

\qquad

$$
=
$$

\qquad
as desired.
(b) Suppose $f: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}$ satisfies $f(0)=1, f(1)=2$, and

$$
f(n)=2 f(n-1)-f(n-2)
$$

for $n \geq 2$. Find a formula for $f(n)$ by experimentation, then prove it using induction. Write your proof without introducing any new variables (i.e., just using n), and be very careful when stating your inductive hypothesis!
(c) Use induction on n to prove that

$$
1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}
$$

for all $n \geq 1$.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Suppose $x, y \in \mathbb{R}$. Prove $x^{3}+x^{2} y=y^{2}+x y$ if and only if $y=x^{2}$ or $y=-x$.
(H2) Suppose $x \in \mathbb{R}$ with $x>0$.
(a) Use induction on n to prove that

$$
(1+x)^{n} \geq 1+n x
$$

for all $n \in \mathbb{Z}$ with $n \geq 1$.
Note: you may not use the binomial theorem in your proof.
(b) Is part (a) still true if the " $x>0$ " assumption is omitted? If not, where in your proof did you use this assumption?
(H3) Let $D=\{(a, b): a, b \in \mathbb{Z}\}$, and define a relation \sim on D with $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$ whenever $a+b=a^{\prime}+b^{\prime}$.
(a) Prove \sim is an equivalence relation (that is, \sim is reflexive, symmetric, and transitive).
(b) Find the equivalence class of $(0,0)$.
(H4) Determine whether each of the following statements is true or false. Prove your claims.
(a) If a polynomial $f: \mathbb{R} \rightarrow \mathbb{R}$ is injective, then f is surjective.
(b) If a polynomial $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is injective, then f is surjective.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Let $D=\left\{(a, b): a, b \in \mathbb{Z}_{\geq 0}\right\}$. Prove that the function $f: D \rightarrow \mathbb{Z}_{\geq 0}$ given by

$$
f(a, b)=\frac{1}{2}(a+b)(a+b+1)+a
$$

is a bijection (that is, f is one-to-one and onto).
Hint: as you begin working on this (i.e., in your scratchwork), you may find it helpful to start by drawing a picture of the set D (as points in the plane) and write $f(a, b)$ next to each point (a, b) for $a, b \leq 5$.

