Fall 2023, Math 320: Week 1 Problem Set
 Due: Thursday, September 7th, 2023

The Division Algorithm and Greatest Common Divisors
Discussion problems. The problems below should be worked on in class.
(D1) Greatest Common Divisors. The goal of this problem is to build familiarity and intuition for gcd's. Some of the questions are open-ended; you may find it helpful to do several small(ish) examples to aide in formulating conjectures.
(a) Compare your answers to Preliminary Problem (P1). Agree on a correct definition.
(b) Find $d=\operatorname{gcd}(35,21)$, and find x and y so that $35 x+21 y=d$.
(c) For $a, b \in \mathbb{Z}$ positive, how are $\operatorname{gcd}(a, b), \operatorname{gcd}(-a, b)$ and $\operatorname{gcd}(-a,-b)$ related?
(d) Fill in the blanks in the following proof that $\operatorname{gcd}(c a, c b)=c \operatorname{gcd}(a, b)$ for all $a, b, c \in \mathbb{Z}$ with $c>0$ and a and b not both 0 .

Proof. Let $d=\operatorname{gcd}(a, b)$. Then $k d=a$ and $\ell d=b$ for some $k, \ell \in$ \qquad , and by Bézout's identity, $d=a x+b y$ for some $x, y \in$ \qquad . Multiplying yields the equalities

$$
c a=\left(_\right) c d, \quad c b=\left(_\right) c d, \quad \text { and } \quad c d=\left(_\right) c a+\left(_\right) c b
$$

meaning $\operatorname{gcd}(c a, c b)=$ \qquad by Bézout's identity.
(D2) The Division Algorithm. The goal of this problem is to prove the following theorem.
Theorem. For any $a, b \in \mathbb{Z}$ with $b>0$, there exist unique integers $q, r \in \mathbb{Z}$ with $0 \leq r<b$ so that $a=q b+r$.
(a) First, we will prove that if $a \geq 0$, then $a=7 q+r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r<7$ (that is, we are assuming $b=7$ and $a \geq 0$, and proving only the existence of q and r). The proof below uses induction on a, but contains an error. Locate/correct the error.

Proof. Denote by $P(a)$ the statement " $a=7 q+r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r<7$ ". Base cases: suppose $a=0,1, \ldots, 6$. Choosing $q=0$ and $r=a$, we see $7 q+r=a$.
Inductive step: suppose $a \geq 7$ and that $P(a-7)$ holds (the inductive hypothesis). The inductive hypothesis implies

$$
a-7=7 q^{\prime}+r^{\prime}
$$

for some $q^{\prime}, r^{\prime} \in \mathbb{Z}$ with $0 \leq r^{\prime}<7$. Rearranging yields

$$
a=7\left(q^{\prime}+1\right)+r^{\prime}
$$

and choosing $q=q^{\prime}+1$ and $r=r^{\prime}+1$ completes the proof.
(b) Modify the proof in the previous part (using a different color!) to prove that for any $b>0$ and $a \geq 0$, there exist $q, r \in \mathbb{Z}$ with $0 \leq r<b$ so that $a=q b+r$.
(c) Next, we will prove that if $a<0$, then $a=q b+r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r<b$. As a group, turn the following "proof sketch" into a formal proof, written out fully.

Proof. The integer $a+N b$ is positive if N is large enough. We can then apply part (b) to write $a+N b=q^{\prime} b+r^{\prime}$, and rearrange accordingly to find q and r.
(d) It remains to prove the "uniqueness" part. Fill in the end of the following proof.

Proof. Suppose $q_{1}, r_{1} \in \mathbb{Z}$ with $0 \leq r_{1}<b$ satisfy $a=q_{1} b+r_{1}$, and that $q_{2}, r_{2} \in \mathbb{Z}$ with $0 \leq r_{2}<b$ satisfy $a=q_{2} b+r_{2}$. By way of contradiction, assume $r_{1} \neq r_{2}$. Without loss of generality, assume $r_{1}<r_{2}$. Rearranging $a=q_{1} b+r_{1}=q_{2} b+r_{2}$, we obtain...

Homework problems. You must submit all homework problems in order to receive full credit.
Unless otherwise stated, $a, b, c, d, n \in \mathbb{Z}$ are arbitrary.
For this assigment only, do not use prime factorization in any of your arguments.
(H1) Find $d=\operatorname{gcd}(75,65)$, and find $x, y \in \mathbb{Z}$ so that $75 x+65 y=d$.
(H2) Use the division algorithm to prove that the square of any integer a is either of the form $5 k$, $5 k+1$, or $5 k+4$ for some integer k.
(H3) Let $d=\operatorname{gcd}(a, b)$. Prove that if $a \mid c$ and $b \mid c$, then $a b \mid c d$.
(H4) Prove that if $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}\left(a, b^{n}\right)=1$ for all $a, b, n \in \mathbb{Z}$ with $n \geq 1$.
Hint: use induction on n.
(H5) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$, then $\operatorname{gcd}(a, b+c)=1$.
(b) If $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$, then $\operatorname{gcd}(a, b c)=1$.

