Fall 2023, Math 320: Week 2 Problem Set Due: Thursday, September 14th, 2023 Primes and Unique Factorization

Discussion problems. The problems below should be worked on in class.
(D1) Proving "uniqueness" in the Fundamental Theorem of Arithmetic.
(a) Below is a "proof" that there are infinitely many primes. Locate and correct the error.

Proof. By way of contradiction, suppose there are only k primes p_{1}, \ldots, p_{k}. Let

$$
a=p_{1} \cdots p_{k}+2
$$

For each i, we have $p_{i} \mid\left(p_{1} \cdots p_{k}\right)$, so $p_{i} \nmid a$. This means no prime numbers divide a, and thus a cannot be written as a product of primes. This contradicts the FTA.
(b) The following is a proof that if p is prime and $p \mid a_{1} \cdots a_{k}$, then $p \mid a_{i}$ for some i. Write a new proof using induction on k (to avoid the shaky "Repeating this process").

Proof. By way of contradiction, suppose p is prime and $p \mid a_{1} \cdots a_{k}$, but $p \nmid a_{i}$ for every i. Since $p \mid\left(a_{1} \cdots a_{k-1}\right)\left(a_{k}\right)$ and p is prime, either $p \mid a_{1} \cdots a_{k-1}$ or $p \mid a_{k}$. By assumption, $p \nmid a_{k}$, so $p \mid a_{1} \cdots a_{k-1}$. Repeating this process, we conclude $p \mid a_{1} a_{2}$. However, we assumed $p \nmid a_{1}$ and $p \nmid a_{2}$, which contradicts the fact that p is prime.
(c) Fill in the blanks the proof of the following claim: if $a \in \mathbb{Z}_{\geq 1}$ satisfies

$$
a=p_{1} p_{2} \cdots p_{k}=q_{1} q_{2} \cdots q_{r}
$$

for primes $p_{1}, \ldots, p_{k}, q_{1}, \ldots q_{r}$, then $k=r$ and, after possibly reordering the right hand side, we have $p_{i}=q_{i}$ for each i (this is the "uniqueness" part of the FTA).

Proof. We proceed by induction on a. If $a=1$, then necessarily $k=r=\ldots$.
For the inductive step, suppose $a \geq 2$ and assume that the "uniqueness" part of FTA holds every $a^{\prime}<a$ (this is the inductive hypothesis). Since $p_{k} \mid$ \qquad , part (b) implies $p_{k} \mid$ \qquad for some i. Up to reordering of the q 's, we may assume $i=$ \qquad -. Since p_{k} and \qquad are prime, $p_{k}=$ \qquad , and applying the inductive hypothesis to

$$
a^{\prime}=p_{1} p_{2} \cdots p_{k-1}=
$$

\qquad
completes the proof.
(D2) Applying the Fundamental Theorem of Arithmetic.
(a) Fill in the blanks in the following proof that if p is prime, $n \geq 1$, and $p \mid a^{n}$, then $p \mid a$.

Proof. Let $a=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$ with each p_{i} prime and $r_{i}>0$. Then $a^{n}=p_{1}-\cdots p_{k}-$. Since $p \mid a$, we have $a=c p$ for some $c \in \mathbb{Z}$. By uniqueness in FTA, $p=p_{i}$ for some i, meaning $a=p\left(p_{1}-\cdots p_{i}-\cdots p_{k}-\right)$, which implies $p \mid a$.
(b) If the hypothesis " p is prime" is dropped from the previous statement, is the statement still true? Provide a proof or a counterexample.
(c) Let $a=2^{3} 3^{2} 5^{2}$ and $b=2^{1} 3^{4} 7^{1}$. Find $\operatorname{gcd}(a, b)$, and verify that your answer is correct by finding all common divisors of a and b.
(d) Fill in the blank: if $a=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$ and $b=p_{1}^{t_{1}} \cdots p_{k}^{t_{k}}$ for some distinct primes p_{1}, \ldots, p_{k} with each $r_{i}, t_{i} \geq 0$, then $\operatorname{gcd}(a, b)=p_{1}^{u_{1}} \cdots p_{k}^{u_{k}}$, where $u_{i}=$ \qquad for each i. Hint: how can we tell if $a \mid b$ in terms of the r_{i} 's and t_{i} 's?
(e) Prove $a \mid b$ if and only if $a^{2} \mid b^{2}$.

Homework problems. You must submit all homework problems in order to receive full credit.
Unless otherwise stated, $a, b, c, d, n \in \mathbb{Z}$ are arbitrary and $p \in \mathbb{Z}_{>2}$ is prime.
(H1) Prove that if $p>3$ is prime, then $p^{2}+2$ is composite. Hint: consider the possible remainders when dividing p by 3 .
(H2) Prove that any nonzero $n \in \mathbb{Z}$ can be written uniquely in the form $n=2^{k} m$ for some $k \in \mathbb{Z}_{\geq 0}$ and odd $m \in \mathbb{Z}$.
(H3) Let $d=\operatorname{gcd}(a, b)$. Use the fundamental theorem of arithmetic to prove that if $a \mid c$ and $b \mid c$, then $a b \mid c d$.
(H4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If $d=\operatorname{gcd}(a, b)$, then $d^{2}=\operatorname{gcd}\left(a^{2}, b^{2}\right)$.
(b) If $p>2$ is prime, then $3 p+2$ is prime.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Prove that if $p \geq 5$ and $q \geq 5$ are prime, then $24 \mid\left(p^{2}-q^{2}\right)$.

