Fall 2023, Math 320: Week 2 Problem Set Due: Thursday, September 14th, 2023 Primes and Unique Factorization

Discussion problems. The problems below should be worked on in class.

(D1) Proving "uniqueness" in the Fundamental Theorem of Arithmetic.

(a) Below is a "proof" that there are infinitely many primes. Locate and correct the error.

Proof. By way of contradiction, suppose there are only k primes p_1, \ldots, p_k . Let

 $a = p_1 \cdots p_k + 2.$

For each *i*, we have $p_i \mid (p_1 \cdots p_k)$, so $p_i \nmid a$. This means no prime numbers divide *a*, and thus *a* cannot be written as a product of primes. This contradicts the FTA. \Box

(b) The following is a proof that if p is prime and $p \mid a_1 \cdots a_k$, then $p \mid a_i$ for some i. Write a new proof using **induction** <u>on</u> k (to avoid the shaky "Repeating this process").

Proof. By way of contradiction, suppose p is prime and $p \mid a_1 \cdots a_k$, but $p \nmid a_i$ for every i. Since $p \mid (a_1 \cdots a_{k-1})(a_k)$ and p is prime, either $p \mid a_1 \cdots a_{k-1}$ or $p \mid a_k$. By assumption, $p \nmid a_k$, so $p \mid a_1 \cdots a_{k-1}$. Repeating this process, we conclude $p \mid a_1a_2$. However, we assumed $p \nmid a_1$ and $p \nmid a_2$, which contradicts the fact that p is prime. \Box

(c) Fill in the blanks the proof of the following claim: if $a \in \mathbb{Z}_{>1}$ satisfies

$$a = p_1 p_2 \cdots p_k = q_1 q_2 \cdots q_r$$

for primes $p_1, \ldots, p_k, q_1, \ldots, q_r$, then k = r and, after possibly reordering the right hand side, we have $p_i = q_i$ for each *i* (this is the "uniqueness" part of the FTA).

Proof. We proceed by induction on a. If a = 1, then necessarily $k = r = _$. For the inductive step, suppose $a \ge 2$ and assume that the "uniqueness" part of FTA holds every a' < a (this is the inductive hypothesis). Since $p_k \mid __$, part (b) implies $p_k \mid __$ for some i. Up to reordering of the q's, we may assume $i = __$. Since p_k and $__$ are prime, $p_k = __$, and applying the inductive hypothesis to

$$a' = p_1 p_2 \cdots p_{k-1} = _$$

completes the proof.

(D2) Applying the Fundamental Theorem of Arithmetic.

(a) Fill in the blanks in the following proof that if p is prime, $n \ge 1$, and $p \mid a^n$, then $p \mid a$.

Proof. Let $a = p_1^{r_1} \cdots p_k^{r_k}$ with each p_i prime and $r_i > 0$. Then $a^n = p_1 - \cdots - p_k$. Since $p \mid a$, we have a = cp for some $c \in \mathbb{Z}$. By uniqueness in FTA, $p = p_i$ for some i, meaning $a = p(p_1 - \cdots - p_i)$, which implies $p \mid a$.

- (b) If the hypothesis "p is prime" is dropped from the previous statement, is the statement still true? Provide a proof or a counterexample.
- (c) Let $a = 2^3 3^2 5^2$ and $b = 2^1 3^4 7^1$. Find gcd(a, b), and verify that your answer is correct by finding *all* common divisors of *a* and *b*.
- (d) Fill in the blank: if $a = p_1^{r_1} \cdots p_k^{r_k}$ and $b = p_1^{t_1} \cdots p_k^{t_k}$ for some distinct primes p_1, \ldots, p_k with each $r_i, t_i \ge 0$, then $gcd(a, b) = p_1^{u_1} \cdots p_k^{u_k}$, where $u_i = ____$ for each *i*. Hint: how can we tell if $a \mid b$ in terms of the r_i 's and t_i 's?
- (e) Prove $a \mid b$ if and only if $a^2 \mid b^2$.

Homework problems. You must submit all homework problems in order to receive full credit.

Unless otherwise stated, $a, b, c, d, n \in \mathbb{Z}$ are arbitrary and $p \in \mathbb{Z}_{\geq 2}$ is prime.

- (H1) Prove that if p > 3 is prime, then $p^2 + 2$ is composite. Hint: consider the possible remainders when dividing p by 3.
- (H2) Prove that any **nonzero** $n \in \mathbb{Z}$ can be written uniquely in the form $n = 2^k m$ for some $k \in \mathbb{Z}_{\geq 0}$ and odd $m \in \mathbb{Z}$.
- (H3) Let d = gcd(a, b). Use the fundamental theorem of arithmetic to prove that if $a \mid c$ and $b \mid c$, then $ab \mid cd$.
- (H4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) If $d = \gcd(a, b)$, then $d^2 = \gcd(a^2, b^2)$.
 - (b) If p > 2 is prime, then 3p + 2 is prime.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Prove that if $p \ge 5$ and $q \ge 5$ are prime, then $24 \mid (p^2 - q^2)$.