Fall 2023, Math 320: Week 3 Problem Set
 Due: Thursday, September 21st, 2023
 Modular Arithmetic

Discussion problems. The problems below should be worked on in class.
(D1) Modular addition and multiplication. Determine which of the following are true without using a calculator.
(a) $1234567 \cdot 90123 \equiv 1 \bmod 10$.
(b) $2^{58} \equiv 3^{58} \bmod 5$.
(c) $1234567 \cdot 90123=111262881731$.
(d) There exists $x \in \mathbb{Z}_{4}$ such that $x^{2}+x=[1]_{4}$.
(e) The equation $x^{2}+1=0$ has no integer solutions (use modular arithmetic to justify).
(f) For each $n \geq 3$, the equation $x^{2}+[1]_{n}=[0]_{n}$ has no solutions in \mathbb{Z}_{n}.
(D2) Divisibility rules. In lecture, we previewed a trick that let us to quickly determine when an integer is divisible by 9 . In what follows, fix a positive integer m, and suppose

$$
m=a_{r} \cdot 10^{r}+\cdots+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0}
$$

is the expression of m in base 10 , with $0 \leq a_{i} \leq 9$ for each i.
(a) Complete the following proof that $m \equiv\left(a_{r}+\cdots+a_{1}+a_{0}\right) \bmod 9$. Be clear which modular arithmetic property is used for each equality!

Proof. Using the above expression for m, we obtain

$$
\begin{aligned}
{[m]_{9} } & =\left[a_{r}(\ldots)+\cdots+a_{2} 10^{2}+a_{1} 10+a_{0}\right]_{9} \\
& =[\ldots]_{9}+\cdots+[\ldots]_{9}+\left[a_{1} 10\right]_{9}+\left[a_{0}\right]_{9} \\
& =\left[\square_{9}[\ldots]_{9}+\cdots+[\ldots]_{9}[\ldots]_{9}+\left[a_{1}\right]_{9}[10]_{9}+\left[a_{0}\right]_{9}\right. \\
& =[\ldots]_{9}[\ldots]_{9}+\cdots+[\ldots]_{9}[\ldots]_{9}+\left[a_{1}\right]_{9}[1]_{9}+\left[a_{0}\right]_{9} \\
& =[\square]_{9}+\cdots+[\square]_{9}+\left[a_{1}\right]_{9}+\left[a_{0}\right]_{9} \\
& =\left[a_{r}+\cdots+a_{1}+\overline{\left.a_{0}\right]_{9}} .\right.
\end{aligned}
$$

meaning $m \equiv\left(a_{r}+\cdots+a_{1}+a_{0}\right) \bmod 9$.
(b) Prove that $9 \mid m$ if and only if the sum of the digits of m is divisible by 9 .
(c) Modify your proof in part (a) to prove that an integer m is divisible by 3 if and only if the sum of its digits (in base 10) is divisible by 3 .
(d) Prove that $5 \mid m$ if and only if the last digit of m is 0 or 5 .
(e) Using parts (c) and (d), develop a criterion for when an integer is divisible by 15.
(D3) The orders of elements of \mathbb{Z}_{n}. The order of an element $[a]_{n} \in \mathbb{Z}_{n}$ is the smallest integer k such that adding $[a]_{n}$ to itself k times yields $[0]_{n}$, that is, $k a \equiv 0 \bmod n$.
(a) Find the order of each element of $\mathbb{Z}_{7}, \mathbb{Z}_{10}$, and \mathbb{Z}_{12}.
(b) Conjecture a formula for the order of $[a]_{n}$ in terms of a and n.

Hint: use your answers from part (a) for inspiration. When in doubt, do more examples!
(c) Based on your conjectured formula, for which n does every nonzero $[a]_{n}$ have order n ?

Give a (short and sweet) proof.

Homework problems. You must submit all homework problems in order to receive full credit.
Unless otherwise stated, $a, b, c, d, n \in \mathbb{Z}$ are arbitrary and $p \in \mathbb{Z}_{\geq 2}$ is prime.
(H1) Prove $(a+b)^{5} \equiv a^{5}+b^{5} \bmod 5$ (this is a special case of the "Freshman's Dream" equation).
(H2) Prove that an integer a is divisible by 8 if and only if the last three digits of a in base 10 form a 3 -digit number that is divisible by 8 .
(H3) (a) Suppose

$$
m=a_{r} \cdot 10^{r}+\cdots+a_{2} \cdot 10^{2}+a_{1} \cdot 10+a_{0}
$$

expresses m in base 10 . Prove that $13 \mid m$ if and only if

$$
13 \mid\left(a_{r} \cdot 10^{r-1}+\cdots+a_{3} \cdot 10^{2}+a_{2} \cdot 10+a_{1}\right)+4 a_{0} .
$$

(b) Use part (a) to decide whether 20192018 is divisible by 13.
(H4) Prove that if $[a]_{n}[c]_{n}=[b]_{n}[c]_{n}$ and $\operatorname{gcd}(c, n)=1$, then $[a]_{n}=[b]_{n}$.
(H5) The following statements are all false. For each, provide a counterexample.
(a) If $a b \equiv 0 \bmod n$, then $a \equiv 0 \bmod n$ or $b \equiv 0 \bmod n$.
(b) If $a c \equiv b c \bmod n$ and $c \not \equiv 0 \bmod n$, then $a \equiv b \bmod n$.
(c) If $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)$, then $a \equiv b \bmod n$.
(d) If $n \geq 2$, then $(a+b)^{n} \equiv a^{n}+b^{n} \bmod n$ for every $a, b \in \mathbb{Z}$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Find and prove a characterization of the integers $n \geq 1$ for which the following statement holds for all $a, b \in \mathbb{Z}$: "If $a^{2} \equiv b^{2} \bmod n$, then $a \equiv b \bmod n$ or $-a \equiv b \bmod n$."

