Fall 2023, Math 320: Week 4 Problem Set Due: Thursday, September 28th, 2023 Introduction To Rings

Discussion problems. The problems below should be worked on in class.
(D1) Checking ring axioms. Determine which of the following sets R is a ring under the given addition and multiplication (hint: in some parts, Theorem 3.2 may be useful). For each ring, determine whether it is (i) commutative, (ii) an integral domain, and (iii) a field.
(a) The set R of 2×2 real matrices (under matrix addition/multiplication) given by

$$
R=\left\{\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right): a, b, c \in \mathbb{R}\right\} \subset M_{2}(\mathbb{R})
$$

First, fill in the blanks in the following proof that R is closed under multiplication.
Proof. For $M, N \in R$, where $M=\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right), N=\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ 0 & c^{\prime}\end{array}\right)$ for some $a, b, c, a^{\prime}, b^{\prime}, c^{\prime} \in \mathbb{R}$, $M N=\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ 0 & c^{\prime}\end{array}\right)=\left(\begin{array}{ll}\square & -\end{array}\right) \in R$,
so R is closed under multiplication.
(b) The set $R=\left\{r_{5} x^{5}+\cdots+r_{1} x+r_{0}: r_{i} \in \mathbb{R}\right\} \subset \mathbb{R}[x]$ of polynomials in a variable x with real coefficients and degree at most 5 , under the usual addition and multiplication.
(c) The set $R=\mathbb{R} \cup\{\infty\}$ of real numbers together with infinity, and addition and multiplication operations $a \oplus b=\min (a, b)$ and $a \odot b=a+b$, respectively.
(d) The set $R=\mathbb{Z}$ with operations \oplus and \odot given by $a \oplus b=a+b$ and $a \odot b=a+b$ (in particular, both addition and multiplication in R correspond to integer addition).
(e) The set $R=\{p(x) \in \mathbb{R}[x]: p(0) \in \mathbb{Z}\}$ of polynomials in a variable x with real coefficients and integer constant term, under the usual addition and multiplication. For example, $2 x^{2}+\frac{1}{2} x+5 \in R$ and $\frac{6}{5} x \in R$, but $5 x+\frac{1}{3} \notin R$.
(f) The set $R=\mathbb{R}_{>0}$ of positive real numbers with operations \oplus and \odot given by $a \oplus b=a b$ and $a \odot b=a^{\ln (b)}$ for all $a, b \in R$.
(D2) Cartesian products. The Cartesian product of two rings R_{1} and R_{2} is the set

$$
R_{1} \times R_{2}=\left\{(a, b): a \in R_{1}, b \in R_{2}\right\}
$$

with addition $(a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}\right)$ and multiplication $(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a \cdot a^{\prime}, b \cdot b^{\prime}\right)$. Note: the operation in each coordinate happen in their respective rings.
(a) Find $(1,2)+(3,4)$ and $(1,2) \cdot(3,4)$ in $\mathbb{R} \times \mathbb{R}$. Locate the additive identity of $\mathbb{R} \times \mathbb{R}$.
(b) Find the additive inverses of $\left([1]_{6},[0]_{3}\right),\left([3]_{6},[2]_{3}\right)$, and $\left([5]_{6},[1]_{3}\right) \in \mathbb{Z}_{6} \times \mathbb{Z}_{3}$.
(c) What is the multiplicative identity of $\mathbb{Z}_{6} \times \mathbb{Z}_{3}$? Which elements listed in part (b) have a multiplicative inverse?
(d) Justify each " $=$ " in the following proof that addition is commutative in $R_{1} \times R_{2}$ for any rings R_{1} and R_{2}.

Proof. Given $(a, b),(c, d) \in R_{1} \times R_{2}$, we have

$$
(a, b)+(c, d)=(a+c, b+d)=(c+a, b+d)=(c+a, d+b)=(c, d)+(a, b)
$$

which completes the proof.
(e) Prove that every element of $R_{1} \times R_{2}$ has an additive inverse.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Locate a subring $R \subseteq \mathbb{Z}_{24}$ with exactly 3 elements (be sure to prove that your chosen subset R is indeed a subring of \mathbb{Z}_{24}). Does R have a multiplicative identity?
(H2) (a) Locate a subring of $\mathbb{Z}_{5} \times \mathbb{Z}_{4}$ with exactly 5 elements.
(b) Locate a subring of $\mathbb{Z}_{6} \times \mathbb{Z}_{4}$ with exactly 12 elements.
(H3) Let

$$
R=\left\{B \in M_{2}(\mathbb{R}):\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) B=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right\}
$$

(a) Locate 3 distinct matrices in R.
(b) Prove that R is a subring of $M_{2}(\mathbb{R})$.
(H4) Let $R=\mathbb{Z}$ and define

$$
a \oplus b=a+b+1 \quad \text { and } \quad a \odot b=a b+a+b
$$

for all $a, b \in R$. Prove that (R, \oplus, \odot) is a commutative ring.
(H5) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If R is a ring and S is a subset of R, then S is a subring of R.
(b) The ring $\mathbb{Z} \times \mathbb{Z}$ is an integral domain.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Let S be a set and $P(S)$ denote the set of all subsets of S. Define addition and multiplication operations \oplus and \odot by

$$
M \oplus N=(M \backslash N) \cup(N \backslash M) \quad \text { and } \quad M \odot N=M \cap N
$$

for all $M, N \in P(S)$. Determine whether $(P(S), \oplus, \odot)$ is a field.

