Fall 2023, Math 320: Week 5 Problem Set Due: Thursday, October 5th, 2023 Properties of Rings

Discussion problems. The problems below should be worked on in class.

- (D1) The ring structure of \mathbb{Z}_n . The goal of this problem is to determine which elements of \mathbb{Z}_n are zero-divisors, which are units, and which are neither.
 - (a) Compare your answers to problem (P1). Then find all zero divisors in \mathbb{Z}_5 , \mathbb{Z}_8 , and \mathbb{Z}_{10} .
 - (b) Prove that if $m, n \geq 2$, then \mathbb{Z}_{mn} is not an integral domain.
 - (c) Suppose p is prime. Complete the following proof that \mathbb{Z}_p is an integral domain. Hint: use the fact that if p is prime and $p \mid ab$, then $p \mid a$ or $p \mid b$.

Proof. Fix $[a]_p, [b]_p \in \mathbb{Z}_p$, and suppose $[a]_p[b]_p = [0]_p$. We need to prove that either $[a]_p = [0]_p$ or $[b]_p = [0]_p$. Since $[0]_p = [a]_p[b]_p = [ab]_p$, we have $p \mid ab$. As such, \square

- (d) Multiply each element of \mathbb{Z}_7 by $[4]_7$ (i.e. find $[0]_7 \cdot [4]_7$, then $[1]_7 \cdot [4]_7$, and so forth). Do the same with $[5]_7$. What do you notice about which elements of \mathbb{Z}_7 appear?
- (e) Multiply every element of \mathbb{Z}_{11} by $[3]_{11}$. Which elements of \mathbb{Z}_{11} are obtained? Hint: you may want to "divide and conquer" within your group!
- (f) Suppose p is prime. Find and correct the error in the following proof that \mathbb{Z}_p is a field.

Proof. Fix an arbitrary $a \in \mathbb{Z}_p$. Since \mathbb{Z}_p is finite, let a_1, a_2, \ldots, a_p denote the complete list of distinct elements of \mathbb{Z}_p . We must find k so that $a_k \cdot a = [1]_p$. Consider the list

$$a_1 \cdot a, \quad a_2 \cdot a, \quad \dots, \quad a_p \cdot a.$$

We claim these elements are all distinct from one another: since \mathbb{Z}_p is an integral domain, if $a_i \cdot a = a_j \cdot a$, then cancelling the a's yields $a_i = a_j$. This means every element of \mathbb{Z}_p appears exactly once in the centered list. In particular, $[1]_p$ appears somewhere in the list, meaning for some k, we have $a_k \cdot a = [1]_p$.

(g) Look carefully at the proof in part (f). What properties of \mathbb{Z}_p were used in the proof? Use this to complete the following (much more general) result.

Theorem (Theorem 3.9). If R is a integral domain and ______, then R is a field.

- (h) Combining the results above, characterize (in terms of n) when \mathbb{Z}_n is a field, when \mathbb{Z}_n is an integral domain but not a field, and when \mathbb{Z}_n is neither an integral domain nor a field. State your characterization formally (as a theorem), and **box it 3 times**.
- (D2) Cartesian products.
 - (a) Determine which elements of $\mathbb{Z}_5 \times \mathbb{Z}_4$ are units, and which are zero-divisors.
 - (b) Suppose $m, n \geq 2$. Determine the units and zero-divisors of $\mathbb{Z}_m \times \mathbb{Z}_n$.
 - (c) Locate an element of $\mathbb{Z} \times \mathbb{Z}$ that is a zero-divisor, an element that is a unit, and a nonzero element that is neither a unit nor a zero-divisor.
 - (d) Suppose R_1 and R_2 are rings. Determine which elements of $R_1 \times R_2$ are units, in terms of the units of R_1 and the units of R_2 .
 - (e) Suppose R_1 and R_2 are rings. Determine which elements of $R_1 \times R_2$ are zero-divisors, in terms of the zero-divisors of R_1 and the zero-divisors of R_2 .

Homework problems. You must submit all homework problems in order to receive full credit.

(H1) Consider

$$S = \left\{ \begin{pmatrix} a & a \\ b & b \end{pmatrix} \in M_2(\mathbb{R}) : a, b, \in \mathbb{R} \right\}$$

- (a) Verify S is a subring of $M_2(\mathbb{R})$.
- (b) Locate a matrix $J \in S$ that is a right multiplicative identity (that is, AJ = A for every $A \in S$). Does S have a unity element?
- (H2) Suppose R is a ring and $S, T \subseteq R$ are subrings. Prove $S \cap T$ is a subring of R.
- (H3) Fix a **commutative** ring R. An element $r \in R$ is nilpotent if $r^n = 0$ for some $n \ge 1$.
 - (a) Prove that if $a, b \in R$ are nilpotent, then ab is nilpotent.
 - (b) Prove that if $a, b \in R$ are nilpotent, then a + b is nilpotent.
- (H4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) If R is a commutative ring and $a, b \in R$ are units, then ab is a unit.
 - (b) If R is a commutative ring and $a, b \in R$ are zero divisors, then ab is a zero divisor. Hint: this one is subtle!
 - (c) If R is a ring and $S, T \subseteq R$ are subrings, then $S \cup T$ is a subring of R.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Determine for which $m \geq 2$ the set of non-unit elements of \mathbb{Z}_m is closed under both addition and multiplication. Prove your claim.