Fall 2023, Math 320: Week 5 Problem Set
 Due: Thursday, October 5th, 2023 Properties of Rings

Discussion problems. The problems below should be worked on in class.
(D1) The ring structure of \mathbb{Z}_{n}. The goal of this problem is to determine which elements of \mathbb{Z}_{n} are zero-divisors, which are units, and which are neither.
(a) Compare your answers to problem (P1). Then find all zero divisors in $\mathbb{Z}_{5}, \mathbb{Z}_{8}$, and \mathbb{Z}_{10}.
(b) Prove that if $m, n \geq 2$, then $\mathbb{Z}_{m n}$ is not an integral domain.
(c) Suppose p is prime. Complete the following proof that \mathbb{Z}_{p} is an integral domain.

Hint: use the fact that if p is prime and $p \mid a b$, then $p \mid a$ or $p \mid b$.
Proof. Fix $[a]_{p},[b]_{p} \in \mathbb{Z}_{p}$, and suppose $[a]_{p}[b]_{p}=[0]_{p}$. We need to prove that either $[a]_{p}=[0]_{p}$ or $[b]_{p}=[0]_{p}$. Since $[0]_{p}=[a]_{p}[b]_{p}=[a b]_{p}$, we have $p \mid a b$. As such, \ldots.
(d) Multiply each element of \mathbb{Z}_{7} by $[4]_{7}$ (i.e. find $[0]_{7} \cdot[4]_{7}$, then $[1]_{7} \cdot[4]_{7}$, and so forth). Do the same with $[5]_{7}$. What do you notice about which elements of \mathbb{Z}_{7} appear?
(e) Multiply every element of \mathbb{Z}_{11} by $[3]_{11}$. Which elements of \mathbb{Z}_{11} are obtained?

Hint: you may want to "divide and conquer" within your group!
(f) Suppose p is prime. Find and correct the error in the following proof that \mathbb{Z}_{p} is a field.

Proof. Fix an arbitrary $a \in \mathbb{Z}_{p}$. Since \mathbb{Z}_{p} is finite, let $a_{1}, a_{2}, \ldots, a_{p}$ denote the complete list of distinct elements of \mathbb{Z}_{p}. We must find k so that $a_{k} \cdot a=[1]_{p}$. Consider the list

$$
a_{1} \cdot a, \quad a_{2} \cdot a, \quad \ldots, \quad a_{p} \cdot a
$$

We claim these elements are all distinct from one another: since \mathbb{Z}_{p} is an integral domain, if $a_{i} \cdot a=a_{j} \cdot a$, then cancelling the a 's yields $a_{i}=a_{j}$. This means every element of \mathbb{Z}_{p} appears exactly once in the centered list. In particular, $[1]_{p}$ appears somewhere in the list, meaning for some k, we have $a_{k} \cdot a=[1]_{p}$.
(g) Look carefully at the proof in part (f). What properties of \mathbb{Z}_{p} were used in the proof? Use this to complete the following (much more general) result.
Theorem (Theorem 3.9). If R is a integral domain and \qquad , then R is a field.
(h) Combining the results above, characterize (in terms of n) when \mathbb{Z}_{n} is a field, when \mathbb{Z}_{n} is an integral domain but not a field, and when \mathbb{Z}_{n} is neither an integral domain nor a field. State your characterization formally (as a theorem), and box it 3 times.
(D2) Cartesian products.
(a) Determine which elements of $\mathbb{Z}_{5} \times \mathbb{Z}_{4}$ are units, and which are zero-divisors.
(b) Suppose $m, n \geq 2$. Determine the units and zero-divisors of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$.
(c) Locate an element of $\mathbb{Z} \times \mathbb{Z}$ that is a zero-divisor, an element that is a unit, and a nonzero element that is neither a unit nor a zero-divisor.
(d) Suppose R_{1} and R_{2} are rings. Determine which elements of $R_{1} \times R_{2}$ are units, in terms of the units of R_{1} and the units of R_{2}.
(e) Suppose R_{1} and R_{2} are rings. Determine which elements of $R_{1} \times R_{2}$ are zero-divisors, in terms of the zero-divisors of R_{1} and the zero-divisors of R_{2}.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Consider

$$
S=\left\{\left(\begin{array}{ll}
a & a \\
b & b
\end{array}\right) \in M_{2}(\mathbb{R}): a, b, \in \mathbb{R}\right\}
$$

(a) Verify S is a subring of $M_{2}(\mathbb{R})$.
(b) Locate a matrix $J \in S$ that is a right multiplicative identity (that is, $A J=A$ for every $A \in S)$. Does S have a unity element?
(H2) Suppose R is a ring and $S, T \subseteq R$ are subrings. Prove $S \cap T$ is a subring of R.
(H3) Fix a commutative ring R. An element $r \in R$ is nilpotent if $r^{n}=0$ for some $n \geq 1$.
(a) Prove that if $a, b \in R$ are nilpotent, then $a b$ is nilpotent.
(b) Prove that if $a, b \in R$ are nilpotent, then $a+b$ is nilpotent.
(H4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If R is a commutative ring and $a, b \in R$ are units, then $a b$ is a unit.
(b) If R is a commutative ring and $a, b \in R$ are zero divisors, then $a b$ is a zero divisor. Hint: this one is subtle!
(c) If R is a ring and $S, T \subseteq R$ are subrings, then $S \cup T$ is a subring of R.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Determine for which $m \geq 2$ the set of non-unit elements of \mathbb{Z}_{m} is closed under both addition and multiplication. Prove your claim.

