Fall 2023, Math 320: Week 6 Problem Set
 Due: Thursday, October 12th, 2023 Arithmetic in Rings

Discussion problems. The problems below should be worked on in class.
(D1) Ring arithmetic. Suppose $(R,+, \cdot)$ is a ring. Try to use only one axiom (or theorem) in each proof step in this problem.
(a) Fill in the justifications in the proof that for every $a, b \in R,-(a+b)=(-a)+(-b)$.

Proof. By definition, $-(a+b)$ is the additive inverse of $a+b$. To prove that $(-a)+(-b)$ is the same element of R, we must prove that adding it to $a+b$ yields 0 . Indeed,

$$
\begin{aligned}
(a+b)+((-a)+(-b)) & =(a+b)+((-b)+(-a)) \\
& =(a+(b+(-b)))+(-a) \\
& =\left(a+0_{R}\right)+(-a) \\
& =a+(-a) \\
& =0_{R}
\end{aligned}
$$

and a similar argument shows $((-a)+(-b))+(a+b)=0_{R}$.
(b) Prove that for every $a \in R,-(-a)=a$.
(c) Prove that for every $a, b \in R,-(a-b)=(-a)+b$.

Hint: $a-b$ means $a+(-b)$.
(d) Prove that if R has a unity, then for every $a \in R,\left(-1_{R}\right) a=-a$.
(e) Prove that if $a, b \in R$ with a and $a b$ both units, then b is a unit.
(D2) Identifying familiar rings in disguise. Throughout this problem, let

$$
R_{1}=\mathbb{C} \quad \text { and } \quad R_{2}=\left\{\left(\begin{array}{rr}
a & b \\
-b & a
\end{array}\right): a, b \in \mathbb{R}\right\} .
$$

(a) Find the sum and product of $3+4 i, 5+6 i \in R_{1}$.
(b) Find the sum and product of $\left(\begin{array}{rr}3 & 4 \\ -4 & 3\end{array}\right),\left(\begin{array}{rr}5 & 6 \\ -6 & 5\end{array}\right) \in R_{2}$.
(c) Compare your answers to parts (a) and (b). What do you notice?
(d) Find the sum and product of two arbitrary elements $a+b i, a^{\prime}+b^{\prime} i \in R_{1}$.
(e) Find the sum and product of two arbitrary elements $\left(\begin{array}{rr}a & b \\ -b & a\end{array}\right),\left(\begin{array}{rr}a^{\prime} & b^{\prime} \\ -b^{\prime} & a^{\prime}\end{array}\right) \in R_{2}$.
(f) Is there a natural way to "match" each element of R_{1} with an element of R_{2} ? Define a function $\varphi: R_{1} \rightarrow R_{2}$ for this "matching".
(g) Using your observations above, find an equation relating $\varphi\left(c_{1}\right), \varphi\left(c_{2}\right)$, and $\varphi\left(c_{1}+c_{2}\right)$ for $c_{1}, c_{2} \in R_{1}$. Hint: start with $c_{1}=3+4 i$ and $c_{2}=5+6 i$ as a guide.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Suppose $R=\left\{0_{R}, 1_{R}, a\right\}$ is a ring, and that a is a unit. Use the ring axioms to fill in the addition table and multiplication table of R (each entry should be either $0_{R}, 1_{R}$, or a). Give a justification for each entry.

+	0_{R}	1_{R}	a
0_{R}			
1_{R}			
a			

\cdot	0_{R}	1_{R}	a
0_{R}			
1_{R}			
a			

(H2) Suppose $(R,+, \cdot)$ is a ring. Prove each of the following statements. Identify each ring axiom you use, and try to only use one axiom (or theorem) in each step.
(a) For any $a, b, c, d \in R$, we have $a-b+c=d$ if and only if $a=b-c+d$.
(b) If $a, b, c \in R$ with $a b=1_{R}$ and $c a=1_{R}$, then $b=c$.
(c) If R has unity and $1_{R}=0_{R}$, then $R=\left\{0_{R}\right\}$.
(H3) Fix a ring R and a unit $a \in R$. Prove by induction $\left(a^{-1}\right)^{n}=\left(a^{n}\right)^{-1}$ for every $n \in \mathbb{Z}_{\geq 1}$.
(H4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If R is a ring, then every element of R is either a unit or a zero-divisor.
(b) If F_{1} and F_{2} are fields, then $F_{1} \times F_{2}$ is a field.
(c) If $a, b \in R$ are units, then $a+b$ is a unit.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Suppose $R=\left\{0_{R}, 1_{R}, a, b\right\}$ is a field. Use the field axioms to fill in the addition table and multiplication table of R (each entry should be either $0_{R}, 1_{R}$, a, or b). Give a justification for each entry (except the one that has been filled in for you).

+	0_{R}	1_{R}	a	b
0_{R}				
1_{R}				
a		b		
b				

\cdot	0_{R}	1_{R}	a	b
0_{R}				
1_{R}				
a				
b				

