Fall 2023, Math 320: Week 7 Problem Set
 Due: Tuesday, October 17th, 2023
 Isomorphisms and Homomorphisms

Discussion problems. The problems below should be worked on in class.
(D1) Homomorphisms. The goal of this problem is to get practice with homomorphisms.
(a) Determine whether each of the following maps is a homomorphism.
(i) $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $\varphi(a)=a+3$.
(ii) $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $\varphi(a)=2 a$.
(iii) $\varphi: \mathbb{Z} \rightarrow M_{2}(\mathbb{R})$ given by $\varphi(a)=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$.
(iv) $\varphi: R \rightarrow S$ given by $\varphi\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)=\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right)$, where $R, S \subseteq M_{2}(\mathbb{R})$ are the set of all upper triangular and lower triangular matrices, respectively.
(b) Consider the map $\varphi: \mathbb{R}[x] \rightarrow \mathbb{R}$ given by

$$
\varphi\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d}\right)=a_{0}
$$

for $d \geq 0$ and $a_{0}, a_{1}, \ldots, a_{d} \in \mathbb{R}$. Prove φ is a homomorphism, but not an isomorphism.
(D2) Specifying a homomorphism with minimal information. Suppose $\varphi: \mathbb{R}[x] \rightarrow \mathbb{R}[y]$ is an unspecified homomorphism. Suppose that $\varphi(x)=y+1$, but make no other assumptions (for instance, we aren't given what $\varphi\left(x^{2}\right)$ is).
(a) Find $\varphi\left(x^{3}\right), \varphi\left(x^{2}+2 x\right)$, and $\varphi\left(x^{5}+9 x^{3}+91 x\right)$. Argue that your answer for each is the only possibility.
(b) Fill in the details in the following proof that $\varphi(1)=1$.

Proof. Since φ is a homomorphism, we have

$$
\varphi(1) \cdot(y+1)=\varphi(1) \cdot \varphi(x)=\quad=\quad=y+1
$$

Since $y+1$ is a nonzero and \qquad , cancellation yields $\varphi(1)=1$.
(c) What must $\varphi(0)$ be? What about $\varphi(-x)$? Prove both of your claims.
(d) What must $\varphi(3)$ be? What about $\varphi(1 / 3)$? What about $\varphi(\sqrt{3})$?
(e) Conjecture how many possible maps $\varphi: \mathbb{R}[x] \rightarrow \mathbb{R}[y]$ with $\varphi(x)=y+1$ exist (you do not need to prove it). For which constants a have we not determined what $\varphi(a)$ is?
(D3) Constructing isomorphisms. Prove each of the following isomorphisms.
(a) $\mathbb{Z}_{3} \times \mathbb{Z}_{4} \cong \mathbb{Z}_{12}$.

Hint: use the map $\varphi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{3} \times \mathbb{Z}_{4}$ given by $\varphi\left([a]_{12}\right)=\left([a]_{3},[a]_{4}\right)$. Be sure to prove φ is well-defined!
(b) $R \cong \mathbb{Z}$, where $R=\{(a, a) \in \mathbb{Z} \times \mathbb{Z}: a \in \mathbb{Z}\}$.
(c) $R \cong \mathbb{R} \times \mathbb{R}$, where

$$
R=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right): a, b \in \mathbb{R}\right\} \subseteq M(\mathbb{R})
$$

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Determine whether each of the following maps is a homomorphism.
(a) $\varphi: \mathbb{Q} \rightarrow \mathbb{Q}$ given by $\varphi(0)=0$ and $\varphi(a)=\frac{1}{a}$ for all nonzero $a \in \mathbb{Q}$.
(b) $\varphi: M(\mathbb{R}) \rightarrow M(\mathbb{R})$ given by $\varphi\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ for all $a, b, c, d \in \mathbb{R}$.
(c) $\varphi: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{18}$ with $\varphi\left([a]_{6}\right)=[a]_{18}$ for all $a \in \mathbb{Z}$. Hint: check whether φ is well-defined!
(d) $\varphi: \mathbb{Z}_{18} \rightarrow \mathbb{Z}_{6}$ with $\varphi\left([a]_{18}\right)=[a]_{6}$ for all $a \in \mathbb{Z}$. Hint: check whether φ is well-defined!
(H2) Consider the ring (R, \oplus, \odot), where $R=\mathbb{Z}$,

$$
a \oplus b=a+b+1 \quad \text { and } \quad a \odot b=a b+a+b
$$

Prove that $R \cong \mathbb{Z}$. You do not need to prove R is a ring, as you already did so on a previous homework assignment.

