Fall 2023, Math 320: Week 9 Problem Set Due: Thursday, November 2nd, 2023 Polynomial Rings and Divisibility

Discussion problems. The problems below should be worked on in class.

- (D1) Divisibility in $\mathbb{Q}[x]$ and $\mathbb{Z}_p[x]$.
 - (a) First, divide $a(x) = 2x^5 x^4 + 3x^3 + 2x^2 + x + 1$ by $b(x) = 2x^2 + x + 1$ over \mathbb{Q} . Next, divide a(x) by b(x) over \mathbb{Z}_7 . How are your answers related?
 - (b) Divide $a(x) = x^4 + x^3 + 2x^2 + x + 1$ by $b(x) = x^2 + 1$ over \mathbb{Q} . Without doing another division, decide whether you would get a remainder if you divided over \mathbb{Z}_5 .
 - (c) Determine whether b(x) = x + 2 divides a(x) = x³ + 3x² − 4 over Q without dividing over Q (you may divide over Z₂, Z₃, ...).
- (D2) The polynomial ring $\mathbb{Z}_n[x]$. The goal of this problem is to identify some "nice" properties that R[x] can fail to have when R is not a field.
 - (a) Which elements of $\mathbb{Z}_3[x]$ are units? Hint: consult your notes from Tuesday!
 - (b) Find a unit in $\mathbb{Z}_4[x]$ with positive degree.
 - (c) What is the highest degree a zero-divisor can have in $\mathbb{Z}_6[x]$?
 - (d) Find an element of $\mathbb{Z}_6[x]$ that is **not** a zero-divisor, but whose leading coefficient **is** a zero-divisor of \mathbb{Z}_6 .
 - (e) Find a non-constant polynomial $f(x) \in \mathbb{Z}_6[x]$ such that $f(x) \mid 2x$ and $f(x) \mid 4x$. What is the highest degree f(x) can have?
 - (f) Characterize the zero-divisors of $\mathbb{Z}_4[x]$. State your claim formally, and prove it!
- (D3) Greatest common divisors. In what follows, assume F is a field. Given polynomials $a(x), b(x) \in F[x]$ not both zero, their greatest common divisor, denoted gcd(a(x), b(x)), is the **monic** polynomial of highest degree that divides both a(x) and b(x).
 - (a) Show $d(x) = x + 2 \in \mathbb{Z}_3[x]$ divides both $a(x) = x^3 + 2x^2 + 2x + 1$ and $b(x) = x^3 + 2$.
 - (b) Use the following analog of Bézout's identity for F[x] to prove d(x) in part (a) is the greatest common divisor of a(x) and b(x). Hint: u(x) and v(x) will be linear.

Theorem (Bézout's identity). If d(x) is monic and divides a(x), and b(x), then d(x) = gcd(a(x), b(x)) if and only if there exist $u(x), v(x) \in F[x]$ with d(x) = a(x)u(x) + b(x)v(x).

- (c) Show that 2x + 1 also divides a(x) and b(x). Why is it not the GCD?
- (d) Locate a degree-2 polynomial in $\mathbb{Z}_2[x]$ that is coprime to $x^2 + x$.
- (e) Below is a (correct!) proof that if $a, b, c \in \mathbb{Z}$ with $a \mid bc$ and gcd(a, b) = 1, then $a \mid c$.

Proof. Since $a \mid bc$ and gcd(a, b) = 1, there exist $m \in \mathbb{Z}$ and $x, y \in \mathbb{Z}$ satisfying am = bc and ax + by = 1. As such, c = acx + bcy = acx + amy = a(cx + my), so $a \mid c$. \Box

Copy the above proof onto the board **in full**. Then, prove if $a(x), b(x), c(x) \in F[x]$ with $a(x) \mid b(x)c(x)$ and gcd(a(x), b(x)) = 1, then $a(x) \mid c(x)$.

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Consider the polynomials $f(x) = x^5 + 3x^4 7x^3 + 5x + 4$ and $g(x) = 2x^2 + x + 5$. Use the division algorithm to divide f(x) by g(x) over \mathbb{Z}_3 . Do the same over \mathbb{Z}_{11} . Do your answers allow you to conclude whether g(x) divides f(x) over \mathbb{Q} ?
- (H2) Determine which elements of $\mathbb{Z}_6[x]$ with degree 1 are units, and which are zero-divisors. Reminder: 2x + 3 and 5x both have degree 1, but the constant polynomial 4 does not.
- (H3) Suppose F is a field. Prove that if $a, b \in F$ with $a \neq b$, then gcd(x + a, x + b) = 1.
- (H4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) If R is a ring and $a \in R$ is a unit, then the constant polynomial f(x) = a is also a unit in R[x].
 - (b) If R is a ring and $a \in R$ is a zero-divisor, then the constant polynomial f(x) = a is also a zero-divisor in R[x].
 - (c) For any $a(x), b(x) \in \mathbb{Z}[x]$ with $b(x) \neq 0$, there exist unique $q(x), r(x) \in \mathbb{Z}[x]$ with $\deg r(x) < \deg b(x)$ such that a(x) = q(x)b(x) + r(x).

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Fix an integral domain R. Suppose that the division algorithm always holds for R[x] (that is, for every a(x), $b(x) \in R[x]$ with $b(x) \neq 0$, there exist unique q(x), $r(x) \in R[x]$ with deg $r(x) < \deg b(x)$ such that a(x) = q(x)b(x) + r(x) holds). Prove that R is a field.