# Fall 2023, Math 320: Week 9 Problem Set <br> Due: Thursday, November 2nd, 2023 <br> Polynomial Rings and Divisibility 

Discussion problems. The problems below should be worked on in class.
(D1) Divisibility in $\mathbb{Q}[x]$ and $\mathbb{Z}_{p}[x]$.
(a) First, divide $a(x)=2 x^{5}-x^{4}+3 x^{3}+2 x^{2}+x+1$ by $b(x)=2 x^{2}+x+1$ over $\mathbb{Q}$. Next, divide $a(x)$ by $b(x)$ over $\mathbb{Z}_{7}$. How are your answers related?
(b) Divide $a(x)=x^{4}+x^{3}+2 x^{2}+x+1$ by $b(x)=x^{2}+1$ over $\mathbb{Q}$. Without doing another division, decide whether you would get a remainder if you divided over $\mathbb{Z}_{5}$.
(c) Determine whether $b(x)=x+2$ divides $a(x)=x^{3}+3 x^{2}-4$ over $\mathbb{Q}$ without dividing over $\mathbb{Q}$ (you may divide over $\left.\mathbb{Z}_{2}, \mathbb{Z}_{3}, \ldots\right)$.
(D2) The polynomial ring $\mathbb{Z}_{n}[x]$. The goal of this problem is to identify some "nice" properties that $R[x]$ can fail to have when $R$ is not a field.
(a) Which elements of $\mathbb{Z}_{3}[x]$ are units? Hint: consult your notes from Tuesday!
(b) Find a unit in $\mathbb{Z}_{4}[x]$ with positive degree.
(c) What is the highest degree a zero-divisor can have in $\mathbb{Z}_{6}[x]$ ?
(d) Find an element of $\mathbb{Z}_{6}[x]$ that is not a zero-divisor, but whose leading coefficient is a zero-divisor of $\mathbb{Z}_{6}$.
(e) Find a non-constant polynomial $f(x) \in \mathbb{Z}_{6}[x]$ such that $f(x) \mid 2 x$ and $f(x) \mid 4 x$. What is the highest degree $f(x)$ can have?
(f) Characterize the zero-divisors of $\mathbb{Z}_{4}[x]$. State your claim formally, and prove it!
(D3) Greatest common divisors. In what follows, assume $F$ is a field. Given polynomials $a(x), b(x) \in F[x]$ not both zero, their greatest common divisor, denoted $\operatorname{gcd}(a(x), b(x))$, is the monic polynomial of highest degree that divides both $a(x)$ and $b(x)$.
(a) Show $d(x)=x+2 \in \mathbb{Z}_{3}[x]$ divides both $a(x)=x^{3}+2 x^{2}+2 x+1$ and $b(x)=x^{3}+2$.
(b) Use the following analog of Bézout's identity for $F[x]$ to prove $d(x)$ in part (a) is the greatest common divisor of $a(x)$ and $b(x)$. Hint: $u(x)$ and $v(x)$ will be linear.
Theorem (Bézout's identity). If $d(x)$ is monic and divides $a(x)$, and $b(x)$, then $d(x)=$ $\operatorname{gcd}(a(x), b(x))$ if and only if there exist $u(x), v(x) \in F[x]$ with $d(x)=a(x) u(x)+$ $b(x) v(x)$.
(c) Show that $2 x+1$ also divides $a(x)$ and $b(x)$. Why is it not the GCD?
(d) Locate a degree-2 polynomial in $\mathbb{Z}_{2}[x]$ that is coprime to $x^{2}+x$.
(e) Below is a (correct!) proof that if $a, b, c \in \mathbb{Z}$ with $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.

Proof. Since $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, there exist $m \in \mathbb{Z}$ and $x, y \in \mathbb{Z}$ satsifying $a m=b c$ and $a x+b y=1$. As such, $c=a c x+b c y=a c x+a m y=a(c x+m y)$, so $a \mid c$.

Copy the above proof onto the board in full. Then, prove if $a(x), b(x), c(x) \in F[x]$ with $a(x) \mid b(x) c(x)$ and $\operatorname{gcd}(a(x), b(x))=1$, then $a(x) \mid c(x)$.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Consider the polynomials $f(x)=x^{5}+3 x^{4}-7 x^{3}+5 x+4$ and $g(x)=2 x^{2}+x+5$. Use the division algorithm to divide $f(x)$ by $g(x)$ over $\mathbb{Z}_{3}$. Do the same over $\mathbb{Z}_{11}$. Do your answers allow you to conclude whether $g(x)$ divides $f(x)$ over $\mathbb{Q}$ ?
(H2) Determine which elements of $\mathbb{Z}_{6}[x]$ with degree 1 are units, and which are zero-divisors. Reminder: $2 x+3$ and $5 x$ both have degree 1 , but the constant polynomial 4 does not.
(H3) Suppose $F$ is a field. Prove that if $a, b \in F$ with $a \neq b$, then $\operatorname{gcd}(x+a, x+b)=1$.
(H4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If $R$ is a ring and $a \in R$ is a unit, then the constant polynomial $f(x)=a$ is also a unit in $R[x]$.
(b) If $R$ is a ring and $a \in R$ is a zero-divisor, then the constant polynomial $f(x)=a$ is also a zero-divisor in $R[x]$.
(c) For any $a(x), b(x) \in \mathbb{Z}[x]$ with $b(x) \neq 0$, there exist unique $q(x), r(x) \in \mathbb{Z}[x]$ with $\operatorname{deg} r(x)<\operatorname{deg} b(x)$ such that $a(x)=q(x) b(x)+r(x)$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Fix an integral domain $R$. Suppose that the division algorithm always holds for $R[x]$ (that is, for every $a(x), b(x) \in R[x]$ with $b(x) \neq 0$, there exist unique $q(x), r(x) \in R[x]$ with $\operatorname{deg} r(x)<\operatorname{deg} b(x)$ such that $a(x)=q(x) b(x)+r(x)$ holds). Prove that $R$ is a field.

