Fall 2023, Math 320: Week 10 Problem Set
 Due: Thursday, November 9th, 2023 Polynomial Factorization and Irreducibility

Discussion problems. The problems below should be worked on in class.
(D1) Factoring polynomials over \mathbb{Z}_{p}.
(a) Compare your answers to (P1). Over each ring, compare $\operatorname{deg} f(x)$ to the number of roots, and check these against Corollary 4.17.
(b) Factor $f(x)=x^{3}+3 x+1$ and $g(x)=x^{3}+3 x^{2}+2 x+4$ over \mathbb{Z}_{5} as products of irreducibles. Be sure to prove each factor is irreducible!
Hint: use the root theorem to search for linear factors.
(c) Find all degree-2 irreducible polynomials over \mathbb{Z}_{3}. Hint: there are 9 to check!
(d) Factor $x^{4}+x^{3}+2 x^{2}+2 x+1$ over \mathbb{Z}_{3}. Hint: it does factor!
(e) Show that $a(x)=x^{4}+x^{3}+x^{2}+x+1$ is irreducible over \mathbb{Z}_{2}. Why is it not enough to verify $a(x)$ has no roots? Hint: write $a(x)=\left(x^{2}+A x+B\right)\left(x^{2}+C x+D\right)$ and prove no choice of A, B, C, and D works.
(f) Fill in the blank in the following theorem.

Theorem. Fix $f(x) \in F[x]$, and suppose \qquad . Then $f(x)$ is irreducible if and only if $f(x)$ has no roots.
(g) Factor $x^{3}+2 x+1$ over \mathbb{Z}_{3}. What does this tell you about whether it factors over \mathbb{Q} ?
(h) Factor $x^{3}+5 x^{2}+6 x+2$ over \mathbb{Q} by first factoring it over $\mathbb{Z}_{2}, \mathbb{Z}_{3}$, and \mathbb{Z}_{5}.
(D2) Similarities between $F[x]$ and \mathbb{Z}. In what follows, assume F is a field.
(a) Below is a (correct!) proof that if $a, b, c \in \mathbb{Z}$ with $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.

Proof. Since $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, there exist $m \in \mathbb{Z}$ and $x, y \in \mathbb{Z}$ satsifying $a m=b c$ and $a x+b y=1$. As such,

$$
c=a c x+b c y=a c x+a m y=a(c x+m y)
$$

so $a \mid c$.
Copy the above proof onto the board. Then, prove that if $a(x), b(x), c(x) \in F[x]$ with $a(x) \mid b(x) c(x)$ and $\operatorname{gcd}(a(x), b(x))=1$, then $a(x) \mid c(x)$.
(b) Fill in the gaps in the proof that if $a, b, c \in \mathbb{Z}$ with $c>0$, then $\operatorname{gcd}(c a, c b)=c \operatorname{gcd}(a, b)$. Identify where the hypothesis $c>0$ is used.

Proof. Let $d=\operatorname{gcd}(a, b)$, so $a=m d$ and $b=n d$ for some $m, n \in \mathbb{Z}$. This means
\qquad and \qquad , so $c d \mid c a$ and $c d \mid c b$. Moreover, $a x+b y=d$ for some $x, y \in \mathbb{Z}$,
so \qquad , meaning $c d=\operatorname{gcd}(c a, c b)$.
(c) State and prove an analogous result to part (b) for elements of $F[x]$.
(d) Complete the following proof that if $a(x), b(x) \in F[x]$ satisfy $a(x) \mid b(x)$ and $b(x) \mid a(x)$, then $b(x)=C a(x)$ for some $C \in F$.

Proof. Since $a(x) \mid b(x)$, we have $b(x)=a(x) f(x)$ for some $f(x) \in F[x]$, and since $b(x) \mid a(x)$, we have \qquad _. This means

$$
\operatorname{deg} b(x)=\operatorname{deg} f(x)+\operatorname{deg} a(x) \geq \operatorname{deg} a(x)=
$$

so $\operatorname{deg} b(x)=\operatorname{deg}$ \qquad and $\operatorname{deg} f(x)=0$. Choosing $C=$ \qquad completes the proof.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Factor $f(x)=x^{3}+6 x^{2}+1$ over $\mathbb{Z}_{3}, \mathbb{Z}_{5}$, and \mathbb{Z}_{7}. Based on this, does $f(x)$ factor over \mathbb{Q} ?
(H2) Factor $f(x)=x^{5}+4 x^{4}+8 x^{3}+11 x$ over \mathbb{Q}. Be sure to prove your factors are irreducible! Hint: first try to factor $f(x)$ over \mathbb{Z}_{3} and \mathbb{Z}_{5}.
(H3) Find all monic irreducible polynomials in $\mathbb{Z}_{2}[x]$ of degree at most 4 . Hint: be systematic!
(H4) Factor $x^{4}-x, x^{8}-x$, and $x^{16}-x$ over \mathbb{Z}_{2}. How does your answer relate to Problem (H3)?
(H5) Suppose $p>0$ is prime, and $f(x) \in \mathbb{Z}_{p}[x]$. Prove that there are infinitely many polynomials $g(x)$ such that $f(a)=g(a)$ for all $a \in \mathbb{Z}_{p}$.
Hint: first find a polynomial $g(x)$ with positive degree such that $g(a)=0$ for all $a \in \mathbb{Z}_{p}$.
(H6) Consider the set

$$
R=\left\{a_{n} x^{n}+\cdots+a_{2} x^{2}+a_{0} \in \mathbb{Q}[x]: a_{i} \in \mathbb{Q}\right\}
$$

of polynomials over \mathbb{Q} with no linear term.
(a) Prove that R is a subring of $\mathbb{Q}[x]$.
(b) Show that $f(x)=x^{6} \in R$ can be written as a product of irreducible elements of R in more than one way (that is, the factors are not simply associates of one another).

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Consider the set

$$
R=\left\{a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in \mathbb{Q}[x]: a_{0} \in \mathbb{Z}\right\}
$$

of polynomials over \mathbb{Q} with integer constant term. You may assume R is a subring of $\mathbb{Q}[x]$. Prove $f(x)=x$ cannot be written as a product of finitely many irreducible elements of R.

