Fall 2023, Math 320: Week 11 Problem Set Due: Thursday, November 16th, 2023
 Congruence Classes in $F[x]$

Discussion problems. The problems below should be worked on in class.
(D1) Arithmetic modulo $p(x)$. For this problem, all polynomials have coefficients in \mathbb{Q}.
(a) Determine whether $x^{3}+2 x+1 \equiv x^{2}+1 \bmod \left(x^{2}-1\right)$.
(b) Locate the canonical representative of $x^{3}+2 x+1$ modulo $x^{2}-1$.
(c) Use the fact that $\left[x^{2}-1\right]=[0]$ in $\mathbb{Q}[x] /\left\langle x^{2}-1\right\rangle$ to demonstrate $[x]^{2}=[1]$.
(d) Use part (c) to find the canonical representative of $\left[x^{5}-2 x^{4}+2 x+1\right]$ without division.
(e) Demonstrate $[x-1] \in \mathbb{Q}[x] /\left\langle x^{2}-2 x+1\right\rangle$ is a zero-divisor., and $[x-2]$ is a unit.
(D2) Interpreting quotient rings. Consider the rings

$$
R=\mathbb{Q}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\} \subseteq \mathbb{R} \quad \text { and } \quad T=\mathbb{Q}[x] /\left\langle x^{2}-2\right\rangle
$$

(a) Determine whether $\mathbb{Q} \subseteq R$.
(b) Find the sum and product of $2+3 \sqrt{2}$ and $5+7 \sqrt{2}$ in R.
(c) Find the canonical representative of $[x]^{2}$ in T.
(d) Find the sum and product of $[2+3 x]$ and $[5+7 x]$ in T. Do they look familiar?
(e) Define $\varphi: R \rightarrow T$ by $\varphi(a+b \sqrt{2})=[a+b x]$. We will show φ is an isomorphism.
(i) Begin by proving φ is a homomorphism.
(ii) Fill in the gaps in the following proof that φ is injective.

Proof. Suppose $\varphi(a+b \sqrt{2})=\varphi(c+d \sqrt{2})$. This implies $[a+b x]=[c+d x]$, so

$$
(a-c)+(b-d) x=(a+b x)-(c+d x)=
$$

\qquad
for some $k(x) \in \mathbb{Q}[x]$. Since $\operatorname{deg}(k(x)$ $k(x)=0$. This yields $a-c=0$ and $b-d=0$, and thus $a+b \sqrt{2}=c+d \sqrt{2}$.
(iii) Complete the only remaining part of the proof that φ is an isomorphism.
(D3) Identifying familiar quotient rings.
(a) Find a field F and a polynomial $p(x)$ so that $\mathbb{Q}[\sqrt{5}] \cong F[x] /\langle p(x)\rangle$. No proof is required, but specify the isomorphism you would use.
(b) Consider the set

$$
R=\{a+b \sqrt[3]{2}: a, b \in \mathbb{Q}\} \subseteq \mathbb{R}
$$

Is R a ring? If not, what must be added to ensure R is closed under both operations?
(c) Based on part (b), how should $\mathbb{Q}[\sqrt[3]{2}]$ be defined so that it is a subring of \mathbb{R} ?
(d) Find a field F and a polynomial $p(x)$ so that $\mathbb{Q}[\sqrt[3]{2}] \cong F[x] /\langle p(x)\rangle$. No proof is required, but specify the isomorphism you would use.
(e) Fix a field $F, a \in F$, and $f(x) \in F[x]$, and let $R=F[x] /\langle x-a\rangle$. Locate and correct the (subtle!) error in the proof that the canonical representative of $[f(x)]$ is $[f(a)]$.

Proof. Write $f(x)=b_{d} x^{d}+\cdots+b_{1} x+b_{0}$, where $d \in \mathbb{Z}_{\geq 0}$ and $b_{0}, \ldots, b_{d} \in F$. Since $[x-a]=[0]$, we have $[x]=[a]$, so

$$
\begin{aligned}
{[f(x)] } & =\left[b_{d} x^{d}+\cdots+b_{1} x+b_{0}\right]=\left[b_{d}\right][x]^{d}+\cdots+\left[b_{1}\right][x]+\left[b_{0}\right] \\
& =\left[b_{d}\right][a]^{d}+\cdots+\left[b_{1}\right][a]+\left[b_{0}\right]=\left[b_{d} a^{d}+\cdots+b_{1} a+b_{0}\right]=[f(a)]
\end{aligned}
$$

Since $f(a)$ is a constant, $\operatorname{deg} f(a)=0$, so $\operatorname{deg} f(a)<\operatorname{deg}(x-a)$, as desired.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Determine whether $x^{3}+x^{2} \equiv x \bmod \left(x^{2}+x+1\right)$ over \mathbb{Z}_{2} Do the same over \mathbb{Z}_{3}.
(H2) Every element of $R=\mathbb{Q}[x] /\left\langle x^{2}+2 x-1\right\rangle$ can be written in the form $[a x+b]$ for some $a, b \in \mathbb{Q}$ (this is the canonical representative). If $[a x+b][c x+d]=[r x+t]$ with $a, b, c, d, r, t \in \mathbb{Q}$, find formulas for r and t in terms of a, b, c, and d (this is the multiplication rule for R).
(H3) Prove the map $\varphi: \mathbb{C} \rightarrow \mathbb{R}[x] /\left\langle x^{2}+1\right\rangle$ given by $a+b i \mapsto[a+b x]$ is an isomorphism.
(H4) Consider the ring $R=\mathbb{Q}[x] /\left\langle x^{2}\right\rangle$. It turns out every nonzero element of R is either a unit or a zero-divisor (you do not need to prove this). Determine which elements are units and which are zero-divisors.
(H5) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) The element $[x-2] \in \mathbb{Q}[x] /\left\langle x^{2}-2 x\right\rangle$ is a zero-divisor.
(b) The element $[x-1] \in \mathbb{Q}[x] /\left\langle x^{2}-2 x\right\rangle$ is a unit.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Let $R=\mathbb{Z}_{3}[z] /\left\langle z^{2}+z+2\right\rangle$.
(a) Prove that R is a field by locating the multiplicative inverse of each nonzero element.
(b) Factor $x^{9}-x \in \mathbb{Z}_{3}[x]$ and $x^{9}-x \in R[x]$. Remember: z is a coefficient in $R[x]$.

