Fall 2023, Math 320: Week 12 Problem Set Due: Thursday, November 30th, 2023 Quotient Rings

Discussion problems. The problems below should be worked on in class.
(D1) Polynomial quotients over \mathbb{Z}_{n}.
(a) Consider the ring $R=\mathbb{Z}_{2}[x] /\left\langle x^{2}+1\right\rangle$.
(i) List every element of R. Identify 0_{R} and 1_{R}.
(ii) Write down the operation tables for R.
(iii) Is R an integral domain? Is R a field?
(b) Answer the same questions for the ring $T=\mathbb{Z}_{2}[x] /\left\langle x^{2}+x+1\right\rangle$. Is it possible $R \cong T$?
(c) Demonstrate $[x-1] \in \mathbb{Z}_{7}[x] /\left\langle x^{2}-3 x+2\right\rangle$ is a zero-divisor.
(d) Demonstrate $\left[x^{2}-1\right] \in \mathbb{Z}_{7}[x] /\left\langle x^{2}-3 x+2\right\rangle$ is a zero-divisor.
(e) Demonstrate $[x+1] \in \mathbb{Z}_{3}[x] /\left\langle x^{2}-2 x+1\right\rangle$ is a unit.
(f) Determine whether $\left[x^{2}+1\right] \in \mathbb{Z}_{5}[x] /\left\langle x^{3}-2 x^{2}+x\right\rangle$ is a zero-divisor, a unit, or neither.
(g) Determine whether $\left[x^{2}+4\right] \in \mathbb{Z}_{5}[x] /\left\langle x^{3}-2 x^{2}+x\right\rangle$ is a zero-divisor, a unit, or neither.
(h) Locate a field F with exactly 4 elements (hint: look at parts (a) and (b)). Additionally, locate a field with 8 elements, a field with 9 elements, and a field with 27 elements.
(D2) Identifying familiar quotient rings.
(a) Prove $\mathbb{Q}[\sqrt{5}]=\{a+b \sqrt{5}: a, b \in \mathbb{Q}\} \subseteq \mathbb{R}$ is a field by locating an inverse for every nonzero element.
(b) Find a field F and a polynomial $p(x)$ so that $\mathbb{Q}[\sqrt{5}] \cong F[x] /\langle p(x)\rangle$.
(c) Locate a degree-2 polynomial $f(x) \in \mathbb{Q}[x]$ that has $a=1+\sqrt{5}$ as a root.
(d) Consider the set

$$
R=\{a+b \sqrt[3]{2}: a, b \in \mathbb{Q}\} \subseteq \mathbb{R}
$$

Is R a ring? If not, what must be added to ensure R is closed under both operations?
(e) Based on part (b), how should $\mathbb{Q}[\sqrt[3]{2}]$ be defined so that it is a subring of \mathbb{R} ?
(f) Find a field F and a polynomial $p(x)$ so that $\mathbb{Q}[\sqrt[3]{2}] \cong F[x] /\langle p(x)\rangle$.
(g) Let $R=\mathbb{Q}[x] /\left\langle x^{2}-2 x-1\right\rangle$. Locate an element $a \in R$ such that $a^{2}=[2]$. Hint: $(x-1)^{2}-2=x^{2}-2 x-1$.
(h) Identify a subring of \mathbb{R} isomorphic to the ring R from the previous part. Hint: figure out which real number the element $[x] \in R$ behaves like.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) (a) Locate a polynomial $f(x) \in \mathbb{Q}[x]$ such that $f(\sqrt{2}+\sqrt{3})=0$.
Hint: this can be done so that $\operatorname{deg} f(x)=4$. Begin with $a=\sqrt{2}+\sqrt{3}$ and manipulate the equation until no square roots remain.
(b) Based on part (a), fill in the blank so that

$$
\mathbb{Q}[\sqrt{2}+\sqrt{3}]=\{\ldots \quad: a, b, c, d \in \mathbb{Q}\}
$$

is a subring of \mathbb{R} containing \mathbb{Q} and $\sqrt{2}+\sqrt{3}$.
(c) Demonstrate that $\sqrt{2} \in \mathbb{Q}[\sqrt{2}+\sqrt{3}]$ and $\sqrt{3} \in \mathbb{Q}[\sqrt{2}+\sqrt{3}]$.
(H2) Let $R=\mathbb{Z}_{2}[x] /\left\langle x^{3}+x+1\right\rangle$. Find a specific element $r \in R$ such that $R \backslash\{0\}=\left\{r, r^{2}, r^{3}, \ldots\right\}$ (that is, so that every nonzero element of R is a power of r).
Hint: start by listing all of the elements of R.
(H3) Let $R_{1}=\mathbb{Z}_{2}[x] /\left\langle x^{2}\right\rangle$ and $R_{2}=\mathbb{Z}_{2}[y] /\left\langle y^{2}+1\right\rangle$. Prove $R_{1} \cong R_{2}$.
Hint: write out the addition and multiplication tables for each ring, as they can be used to find an isomorphism $\phi: R_{1} \rightarrow R_{2}$ and to verify it is indeed an isomorphism.
(H4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) The ring $R=\mathbb{Z}_{4}[x] /\left\langle x^{2}+1\right\rangle$ contains no zero-divisors.
(b) The ring $R=\mathbb{Z}_{5}[x] /\left\langle x^{2}+1\right\rangle$ contains no zero-divisors.
(c) The ring $R=\mathbb{Z}_{2}[x] /\left\langle x^{2}+x+1\right\rangle$ is isomorphic to \mathbb{Z}_{4}.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Let

$$
F=\mathbb{Z}_{2}[x] /\left\langle x^{3}+x+1\right\rangle \quad \text { and } \quad F^{\prime}=\mathbb{Z}_{2}[y] /\left\langle y^{3}+y^{2}+1\right\rangle
$$

Find an isomorphism $\varphi: F \rightarrow F^{\prime}$.

