Fall 2023, Math 320: Week 12 Problem Set Due: Thursday, November 30th, 2023 Quotient Rings

Discussion problems. The problems below should be worked on in class.

- (D1) Polynomial quotients over \mathbb{Z}_n .
 - (a) Consider the ring $R = \mathbb{Z}_2[x]/\langle x^2 + 1 \rangle$.
 - (i) List every element of R. Identify 0_R and 1_R .
 - (ii) Write down the operation tables for R.
 - (iii) Is R an integral domain? Is R a field?
 - (b) Answer the same questions for the ring $T = \mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle$. Is it possible $R \cong T$?
 - (c) Demonstrate $[x-1] \in \mathbb{Z}_7[x]/\langle x^2 3x + 2 \rangle$ is a zero-divisor.
 - (d) Demonstrate $[x^2 1] \in \mathbb{Z}_7[x]/\langle x^2 3x + 2 \rangle$ is a zero-divisor.
 - (e) Demonstrate $[x+1] \in \mathbb{Z}_3[x]/\langle x^2 2x + 1 \rangle$ is a unit.
 - (f) Determine whether $[x^2 + 1] \in \mathbb{Z}_5[x]/\langle x^3 2x^2 + x \rangle$ is a zero-divisor, a unit, or neither.
 - (g) Determine whether $[x^2 + 4] \in \mathbb{Z}_5[x]/\langle x^3 2x^2 + x \rangle$ is a zero-divisor, a unit, or neither.
 - (h) Locate a field F with exactly 4 elements (hint: look at parts (a) and (b)). Additionally, locate a field with 8 elements, a field with 9 elements, and a field with 27 elements.
- (D2) Identifying familiar quotient rings.
 - (a) Prove $\mathbb{Q}[\sqrt{5}] = \{a + b\sqrt{5} : a, b \in \mathbb{Q}\} \subseteq \mathbb{R}$ is a field by locating an inverse for every nonzero element.
 - (b) Find a field F and a polynomial p(x) so that $\mathbb{Q}[\sqrt{5}] \cong F[x]/\langle p(x) \rangle$.
 - (c) Locate a degree-2 polynomial $f(x) \in \mathbb{Q}[x]$ that has $a = 1 + \sqrt{5}$ as a root.
 - (d) Consider the **set**

$$R = \{a + b\sqrt[3]{2} : a, b \in \mathbb{Q}\} \subseteq \mathbb{R}$$

Is R a ring? If not, what must be added to ensure R is closed under both operations?

- (e) Based on part (b), how should $\mathbb{Q}[\sqrt[3]{2}]$ be defined so that it is a subring of \mathbb{R} ?
- (f) Find a field F and a polynomial p(x) so that $\mathbb{Q}[\sqrt[3]{2}] \cong F[x]/\langle p(x) \rangle$.
- (g) Let $R = \mathbb{Q}[x]/\langle x^2 2x 1 \rangle$. Locate an element $a \in R$ such that $a^2 = [2]$. Hint: $(x - 1)^2 - 2 = x^2 - 2x - 1$.
- (h) Identify a subring of \mathbb{R} isomorphic to the ring R from the previous part. Hint: figure out which real number the element $[x] \in R$ behaves like.

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) (a) Locate a polynomial $f(x) \in \mathbb{Q}[x]$ such that $f(\sqrt{2} + \sqrt{3}) = 0$. Hint: this can be done so that deg f(x) = 4. Begin with $a = \sqrt{2} + \sqrt{3}$ and manipulate the equation until no square roots remain.
 - (b) Based on part (a), fill in the blank so that

$$\mathbb{Q}[\sqrt{2} + \sqrt{3}] = \{ \underline{\qquad} : a, b, c, d \in \mathbb{Q} \}$$

is a subring of \mathbb{R} containing \mathbb{Q} and $\sqrt{2} + \sqrt{3}$.

- (c) Demonstrate that $\sqrt{2} \in \mathbb{Q}[\sqrt{2} + \sqrt{3}]$ and $\sqrt{3} \in \mathbb{Q}[\sqrt{2} + \sqrt{3}]$.
- (H2) Let $R = \mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle$. Find a **specific** element $r \in R$ such that $R \setminus \{0\} = \{r, r^2, r^3, \ldots\}$ (that is, so that every nonzero element of R is a power of r).

Hint: start by listing all of the elements of R.

(H3) Let $R_1 = \mathbb{Z}_2[x]/\langle x^2 \rangle$ and $R_2 = \mathbb{Z}_2[y]/\langle y^2 + 1 \rangle$. Prove $R_1 \cong R_2$.

Hint: write out the addition and multiplication tables for each ring, as they can be used to find an isomorphism $\phi : R_1 \to R_2$ and to verify it is indeed an isomorphism.

- (H4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) The ring $R = \mathbb{Z}_4[x]/\langle x^2 + 1 \rangle$ contains no zero-divisors.
 - (b) The ring $R = \mathbb{Z}_5[x]/\langle x^2 + 1 \rangle$ contains no zero-divisors.
 - (c) The ring $R = \mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle$ is isomorphic to \mathbb{Z}_4 .

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Let

$$F = \mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle$$
 and $F' = \mathbb{Z}_2[y]/\langle y^3 + y^2 + 1 \rangle$.

Find an isomorphism $\varphi: F \to F'$.