Fall 2023, Math 320: Week 14 Problem Set
 Due: Tuesday, December 5th, 2023
 Introduction to Groups

Discussion problems. The problems below should be worked on in class.
(D1) Checking group axioms. Determine whether each of the following sets G forms a group under the given operation $*$.
(a) $G=\mathbb{Z} ; a * b=a \cdot b$.
(b) $G=\mathbb{Z} ; a * b=a-b$.
(c) G is the set of nonzero rational numbers; $a * b=a / b$.
(d) $G=\mathbb{Z}_{\geq 0} ; a * b=a+b$.
(e) $G=\mathbb{Z}_{\geq 1} ; a * b=a b$.
(f) $G=\mathbb{Z}_{10} ; a * b=a b$ (i.e. standard multiplication in \mathbb{Z}_{10}).
(g) $G=\{1,3,7,9\} \subseteq \mathbb{Z}_{10} ; a * b=a b$ (i.e. standard multiplication in \mathbb{Z}_{10}).
(h) $G=\{1,3,7,9\} \subseteq \mathbb{Z}_{9} ; a * b=a b$ (i.e. standard multiplication in \mathbb{Z}_{9}).
(i) $G=\{1,2,4,5,7,8\} \subseteq \mathbb{Z}_{9} ; a * b=a b$ (i.e. standard multiplication in \mathbb{Z}_{9}).
(j) $G=\mathbb{R} \times \mathbb{R} ;(a, b) *(c, d)=(a c, b d)$.
$(\mathrm{k}) G=\mathbb{R}^{*} \times \mathbb{R}$ where \mathbb{R}^{*} is the set of nonzero real numbers; $(a, b) *(c, d)=(a c, a d+b c)$.
(D2) Graph automorphisms. Use the graphs at the bottom as a guide for this problem.
(a) Complete the following proof that for each $n \geq 3$, the n-vertex cycle graph $G=C_{n}$ has exactly $2 n$ automorphisms, and thus $\mathbb{A}\left(C_{n}\right) \cong D_{n}$ as described in lecture.

Proof. Label the vertices of G by $1,2, \ldots, n \in \mathbb{Z}_{n}$ in a clockwise fashion.
Suppose $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ is an automorphism of G, and let $v=f(1)$. We must have $f(2)=v+1$ or \qquad since these are the only vertices connected to v. If $f(2)=v+1$, then $f(3)=$ \qquad $f(4)=$ \qquad , and so on since \qquad . Similarly, if $f(2)=$ \qquad —, the remaining values of f must again follow in cyclic order. This means f is determined by choosing the value $f(1)$ (\qquad possibilities) and then an adjacent value for $f(2)$
\qquad possibilities), yielding $2 n$ total automorphisms.
(b) Prove that if $n \geq 2$ and $G=K_{n}$ is the complete graph, then every permutation of its vertices is an automorphism. Which group from lecture is $\mathbb{A}\left(K_{n}\right)$?
(c) Find (with proof!) all automorphisms of the "appendage graph" (depicted below). Is this isomorphic to a "familiar" group?
(d) Find as many automorphisms of the "Peterson graph" (depicted below) as you can.

Complete graph K_{5}

Appendage graph

Peterson graph

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Each of the following sets of 2×2 real matrices does not form a group under matrix multiplication. For each, locate an axiom that is violated, and give a specific example demonstrating this is the case.
(a) $M=M(\mathbb{R})$ (that is, the set of all 2×2 matrices with real entries).
(b) $M=\left\{\left(\begin{array}{rr}a & b \\ -b & a\end{array}\right): a, b \in \mathbb{R}\right.$ with $a \neq 0$ and $\left.b \neq 0\right\}$.
(H2) Determine whether each of the following sets G form a group under the given operation *. If yes, prove they form a group. If no, give a specific example demonstrating that one of the axioms is violated.
(a) G is the set of nonzero real numbers; $a * b=|a| \cdot b$.
(b) $G=\mathbb{R} ; a * b=a+b+3$.
(H3) For each of the following graphs, list its automorphisms (you may write each element as a permutation or in terms of other automorphisms like we did with the dihedral group) and identify a group from class that is isomorphic to its automorphism group.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Identify a graph H whose automorphism group $\mathbb{A}(H)$ is isomorphic to $\left(\mathbb{Z}_{5},+\right)$.
Hint: to achieve this, the graph should have exactly 5 automorphisms, and each nonidentity automorphism $\sigma \in \mathbb{A}(H)$ should have $\sigma^{5}=e$.

