Fall 2023, Math 320: Week 14 Problem Set Due: Tuesday, December 5th, 2023 Introduction to Groups

Discussion problems. The problems below should be worked on in class.

- (D1) Checking group axioms. Determine whether each of the following sets G forms a group under the given operation *.
 - (a) $G = \mathbb{Z}; a * b = a \cdot b.$
 - (b) $G = \mathbb{Z}; a * b = a b.$
 - (c) G is the set of nonzero rational numbers; a * b = a/b.
 - (d) $G = \mathbb{Z}_{\geq 0}; a * b = a + b.$
 - (e) $G = \mathbb{Z}_{>1}; a * b = ab.$
 - (f) $G = \mathbb{Z}_{10}$; a * b = ab (i.e. standard multiplication in \mathbb{Z}_{10}).
 - (g) $G = \{1, 3, 7, 9\} \subseteq \mathbb{Z}_{10}; a * b = ab$ (i.e. standard multiplication in \mathbb{Z}_{10}).
 - (h) $G = \{1, 3, 7, 9\} \subseteq \mathbb{Z}_9; a * b = ab$ (i.e. standard multiplication in \mathbb{Z}_9).
 - (i) $G = \{1, 2, 4, 5, 7, 8\} \subseteq \mathbb{Z}_9$; a * b = ab (i.e. standard multiplication in \mathbb{Z}_9).
 - (j) $G = \mathbb{R} \times \mathbb{R}$; (a, b) * (c, d) = (ac, bd).
 - (k) $G = \mathbb{R}^* \times \mathbb{R}$ where \mathbb{R}^* is the set of nonzero real numbers; (a, b) * (c, d) = (ac, ad + bc).
- (D2) Graph automorphisms. Use the graphs at the bottom as a guide for this problem.
 - (a) Complete the following proof that for each $n \ge 3$, the *n*-vertex cycle graph $G = C_n$ has exactly 2n automorphisms, and thus $\mathbb{A}(C_n) \cong D_n$ as described in lecture.

Proof. Label the vertices of G by $1, 2, \ldots, n \in \mathbb{Z}_n$ in a clockwise fashion.

Suppose $f : \mathbb{Z}_n \to \mathbb{Z}_n$ is an automorphism of G, and let v = f(1). We must have f(2) = v + 1 or ______ since these are the only vertices connected to v. If f(2) = v + 1, then $f(3) = _____, f(4) = ____,$ and so on since ______. Similarly, if $f(2) = ___,$ the remaining values of f must again follow in cyclic order. This means f is determined by choosing the value f(1) (______ possibilities) and then an adjacent value for f(2) (______ possibilities), yielding 2n total automorphisms.

- (b) Prove that if $n \ge 2$ and $G = K_n$ is the complete graph, then **every** permutation of its vertices is an automorphism. Which group from lecture is $\mathbb{A}(K_n)$?
- (c) Find (with proof!) all automorphisms of the "appendage graph" (depicted below). Is this isomorphic to a "familiar" group?
- (d) Find as many automorphisms of the "Peterson graph" (depicted below) as you can.

Peterson graph

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Each of the following sets of 2×2 real matrices does **not** form a group under matrix multiplication. For each, locate an axiom that is violated, and give a specific example demonstrating this is the case.
 - (a) $M = M(\mathbb{R})$ (that is, the set of **all** 2×2 matrices with real entries).

(b)
$$M = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \text{ with } a \neq 0 \text{ and } b \neq 0 \right\}.$$

- (H2) Determine whether each of the following sets G form a group under the given operation *. If yes, prove they form a group. If no, give a specific example demonstrating that one of the axioms is violated.
 - (a) G is the set of nonzero real numbers; $a * b = |a| \cdot b$.
 - (b) $G = \mathbb{R}; a * b = a + b + 3.$
- (H3) For each of the following graphs, list its automorphisms (you may write each element as a permutation or in terms of other automorphisms like we did with the dihedral group) and identify a group from class that is isomorphic to its automorphism group.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Identify a graph H whose automorphism group $\mathbb{A}(H)$ is isomorphic to $(\mathbb{Z}_5, +)$.

Hint: to achieve this, the graph should have **exactly** 5 automorphisms, and each nonidentity automorphism $\sigma \in \mathbb{A}(H)$ should have $\sigma^5 = e$.