Spring 2016, Math 485
 Week 6 Homework

(Q1) Fix a finite dimensional \mathbb{k}-vector space V and a finite set of vectors $E \subset V$, and let

$$
\mathcal{I}(E)=\{I \subset E: I \text { contains no linear dependencies }\}
$$

Prove that $(E, \mathcal{I}(E))$ forms a matroid. Such matroids are called linear.
(Q2) Fix a finite graph G, and let $E=E(G)$ denote the set of edges, and let

$$
\mathcal{I}(G)=\{I \subset E: I \text { contains no cycles }\}
$$

Prove that $(E, \mathcal{I}(E))$ forms a matroid. Such matroids are called graphical.
(Q3) Fix a bipartite graph $G=(A, E)$, and let

$$
\mathcal{I}(E)=\{I \subset E:|N(I)|=|I|\}
$$

where $N(I) \subset A$ denote the set of neighbors of vertices in I. Prove that $(E, \mathcal{I}(E))$ forms a matroid. Such matroids are called transversal.
(Q4) Prove that every graphical matroid is linear.

