Spring 2016, Math 485
 Week 8 Homework

Prove one direction of the equivalence of any of the following matroid definitions. Remember: you will need to describe the method of transforming your matroid "form" into the other. For example, if \mathcal{I} is the set of independent sets of a matroid, then the collection of bases \mathcal{B} consists of the maximal (w.r.t. containment) sets in \mathcal{I}.
(Q1) Fix a finite set E and a collection of subsets $\mathcal{I} \subset 2^{E}$. Then (E, \mathcal{I}) is an independence matroid if
$(\mathrm{I} 1) \emptyset \in \mathcal{I}$.
(I2) If $I \in \mathcal{I}$ and $J \subset I$, then $J \in \mathcal{I}$.
(I3) If $I, J \in \mathcal{I},|J|<|I|$, then $\exists a \in I-J$ such that $J \cup a \in \mathcal{I}$.
(Q2) Fix a finite set E and a collection of subsets $\mathcal{B} \subset 2^{E}$. Then (E, \mathcal{B}) is a basis matroid if
(B1) $\mathcal{B} \neq \emptyset$.
(B2) For all $A, B \in \mathcal{B}$ and $b \in B-A, \exists a \in A-B$ such that $B-b \cup a \in \mathcal{B}$.
(Q3) Fix a finite set E and a collection of subsets $\mathcal{C} \subset 2^{E}$. Then (E, \mathcal{C}) is a circuit matroid if
$(\mathrm{C} 1) ~ \emptyset \neq \mathcal{C}$.
(C2) $D \in \mathcal{C}, C \subsetneq D, C \notin \mathcal{C}$.
(C3) If $C_{1}, C_{2} \in \mathcal{C}$ distinct, $e \in C_{1} \cap C_{2}$, then $\exists C_{3} \in \mathcal{C}$ with $C_{3} \subset\left(C_{1} \cup C_{2}\right)-e$.
(Q4) Fix a finite set E and a function $r: 2^{E} \rightarrow \mathbb{Z}$. Then (E, r) is a rank matroid if
(R1) $0 \leq r(X) \leq|X| \forall X \subset E$.
(R2) If $X \subset Y \subset E$, then $r(X) \leq r(Y)$.
(R3) If $X, Y \subset E$, then

$$
r(X \cup Y)+r(X \cap Y) \leq r(X)+r(Y)
$$

