Spring 2016, Math 485 Week 8 Homework

Prove one direction of the equivalence of any of the following matroid definitions. Remember: you will need to describe the method of transforming your matroid "form" into the other. For example, if \mathcal{I} is the set of independent sets of a matroid, then the collection of bases \mathcal{B} consists of the maximal (w.r.t. containment) sets in \mathcal{I} .

- (Q1) Fix a finite set E and a collection of subsets $\mathcal{I} \subset 2^E$. Then (E, \mathcal{I}) is an *independence* matroid if
 - (I1) $\emptyset \in \mathcal{I}$.
 - (I2) If $I \in \mathcal{I}$ and $J \subset I$, then $J \in \mathcal{I}$.
 - (I3) If $I, J \in \mathcal{I}, |J| < |I|$, then $\exists a \in I J$ such that $J \cup a \in \mathcal{I}$.
- (Q2) Fix a finite set E and a collection of subsets $\mathcal{B} \subset 2^E$. Then (E, \mathcal{B}) is a *basis matroid* if
 - (B1) $\mathcal{B} \neq \emptyset$.
 - (B2) For all $A, B \in \mathcal{B}$ and $b \in B A$, $\exists a \in A B$ such that $B b \cup a \in \mathcal{B}$.
- (Q3) Fix a finite set E and a collection of subsets $\mathcal{C} \subset 2^E$. Then (E, \mathcal{C}) is a *circuit matroid* if
 - (C1) $\emptyset \neq \mathcal{C}$.
 - (C2) $D \in \mathcal{C}, C \subsetneq D, C \notin \mathcal{C}.$
 - (C3) If $C_1, C_2 \in \mathcal{C}$ distinct, $e \in C_1 \cap C_2$, then $\exists C_3 \in \mathcal{C}$ with $C_3 \subset (C_1 \cup C_2) e$.
- (Q4) Fix a finite set E and a function $r: 2^E \to \mathbb{Z}$. Then (E, r) is a rank matroid if
 - (R1) $0 \le r(X) \le |X| \ \forall X \subset E.$
 - (R2) If $X \subset Y \subset E$, then $r(X) \leq r(Y)$.
 - (R3) If $X, Y \subset E$, then

$$r(X \cup Y) + r(X \cap Y) \le r(X) + r(Y)$$