Spring 2016, Math 485

Week 10 Homework

(Q1) Prove that every irreducible element in the arithmetic congruence monoid

$$
\left(M_{1,4}, \cdot\right)=\{n \geq 1: n \equiv 1 \bmod 4\} \subset\left(\mathbb{Z}_{\geq 1}, \cdot\right)
$$

is either (i) a prime, or (ii) a product of 2 primes each congruent to $3 \bmod 4$.
(Q2) Prove that any additively closed subset $S \subset\left(\mathbb{Z}_{\geq 0},+\right)$ has a unique minimal generating set n_{1}, \ldots, n_{k}. In particular, show that if X generates S, then $n_{1}, \ldots, n_{k} \in X$, so the remaining elements of X are redundant generators. Hint: let $\left\{n_{1}, \ldots, n_{k}\right\}$ denote the irreducible elements of S.
(Q3) Prove that if a numerical monoid S is minimally generated by n_{1}, \ldots, n_{k}, then the elasticty $\rho(S)$ is given by $\rho(S)=n_{k} / n_{1}$.
(Q4) Suppose S is minimally generated by n_{1} and n_{2}. Characterize the value

$$
\min \{\rho(n): n \in S, \rho(n) \neq 1\}
$$

in terms of n_{1} and n_{2}.

