Spring 2019, Math 320: Problem Set 1 Due: Tuesday, February 5th, 2019

 The Division Algorithm and Greatest Common DivisorsDiscussion problems. The problems below should be worked on in class.
(D1) Greatest Common Divisors. The goal of this problem is to build familiarity and intuition for gcd. Some of the questions are open-ended; you may find it helpful to compute several small(ish) examples to aide in formulating conjectures.
(a) Compare your answers to Preliminary Problem (P1). Agree on a correct definition, and write it at the top of the board for reference.
(b) Find $d=(5,7)$, and find x and y so that $5 x+7 y=d$.
(c) Find $d=(35,21)$, and find x and y so that $35 x+21 y=d$.
(d) For $a, b \in \mathbb{Z}$ positive, how are $(a, b),(-a, b)$ and $(-a,-b)$ related?
(e) If $(a, 0)=1$, what can a possibly be?
(f) If $a \in \mathbb{Z}$, what are the possible values of $(a, a+2)$? What about $(a, a+6)$?
(g) Find a formula for $(a, a+24)$ in terms of a. Hint: this can be done in significantly fewer than 12 cases!
(h) Prove or disprove: if $a \mid b$ and $b \mid c$, then $a \mid c$.
(i) Prove or disprove: if $(a, b)=1$ and $(a, c)=1$, then $(a, b+c)=1$.
(j) Write proofs (as a group!) of your conjectures above, starting with part (d).
(D2) The Division Algorithm. The goal of this problem is to prove the following theorem.
Theorem. For any $a, b \in \mathbb{Z}$ with $b>0$, there exist unique integers $q, r \in \mathbb{Z}$ with $0 \leq r<b$ so that $a=q b+r$.
(a) First, we will prove that if $a \geq 0$, then $a=q b+r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r<b$. The following proof uses induction on a, but contains some errors. Locate and correct the errors, and write (as a group!) a full, correct proof on the board.

Proof. Denote by $P(a)$ the statement " $a=q b+r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r<b$ ". Base case: suppose $a<b$. Choosing $q=0$ and $r=a$, we see $q b+r=a$.
Inductive step: suppose $a \geq b$ and that $P(a-b)$ holds (the inductive hypothesis). The inductive hypothesis implies $a-b=q^{\prime} b+r$ for some $q^{\prime}, r \in \mathbb{Z}$ with $0 \leq r<b$. Rearranging yields $a=\left(q^{\prime}+1\right) b+r$, and choosing $q=q^{\prime}+1$ and $r=r^{\prime}+1$ completes the proof.
(b) Next, we will prove that if $a<0$, then $a=q b+r$ for some $q, r \in \mathbb{Z}$ with $0 \leq r<b$. As a group, turn the following "proof sketch" into a formal proof.

Proof. The integer $a+d b$ is positive if d is large enough. We can then apply part (a) to write $a+d b=q^{\prime} b+r^{\prime}$, and rearrange accordingly to find q and r.
(c) It remains to prove the "uniqueness" part. Fill in the end of the following proof.

Proof. Suppose $q_{1}, r_{1} \in \mathbb{Z}$ with $0 \leq r_{1}<b$ satisfy $a=q_{1} b+r_{1}$, and that $q_{2}, r_{2} \in \mathbb{Z}$ with $0 \leq r_{2}<b$ satisfy $a=q_{2} b+r_{2}$. By way of contradiction, assume $r_{1} \neq r_{2}$. Without loss of generality, we can assume $r_{1}<r_{2}$. Rearranging the equation $a=q_{1} b+r_{1}=q_{2} b+r_{2}$, we obtain...
(d) Try to prove part (c) directly, i.e. without proof by contradiction. Start by assuming that $a=q_{1} b+r_{1}=q_{2} b+r_{2}$ as before, but without assuming $r_{1} \neq r_{2}$, and prove $r_{1}=r_{2}$.

Homework problems. You must submit all homework problems in order to receive full credit.
For this assigment only, do not use prime factorization in any of your arguments.
(H1) Find $d=(75,65)$, and find x and y so that $75 x+65 y=d$.
(H2) Use the division algorithm to prove that the square of any integer a is either of the form $5 k$, $5 k+1$, or $5 k+4$ for some integer k.
(H3) Prove that $(a, b)=1$ and $(a, c)=1$ implies $(a, b c)=1$.
(H4) Let $d=(a, b)$. Prove that if $a \mid c$ and $b \mid c$, then $a b \mid c d$.
(H5) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If $a \mid c$ and $(a, b) \mid c$, then $b \mid c$.
(b) If $(a, b)>1$ and $(a, c)>1$, then $(b, c)>1$.
(c) If $(a, b)=1$ and $(a, c)=1$, then $(a, b-c)=1$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Prove that $((a, b), c)=(a,(b, c))$ for all $a, b, c \in \mathbb{Z}$.

