Spring 2019, Math 320: Problem Set 3 Due: Tuesday, February 19th, 2019 Modular Arithmetic

Discussion problems. The problems below should be worked on in class.

- (D1) Modular addition and multiplication. Determine which of the following are true without using a calculator.
 - (a) $1234567 \cdot 90123 \equiv 1 \mod 10$.
 - (b) $2^{58} \equiv 3^{58} \mod 5$.
 - (c) $2468 \cdot 13579 \equiv -3 \mod 25$.
 - (d) $1234567 \cdot 90123 = 111262881731$.
 - (e) There exists $x \in \mathbb{Z}$ such that $x^2 + x \equiv 1 \mod 2$.
 - (f) There exists $x \in \mathbb{Z}$ such that $x^3 + x^2 x + 1 = 1522745$.
- (D2) Divisibility rules. In the last lecture, we previewed a trick that let us to quickly determine when an integer is divisible by 9. In what follows, fix a positive integer a, and suppose $(a_r \cdots a_1 a_0)_{10}$ is the expression of a in base 10, with $0 \le a_i \le 9$ for each i.
 - (a) Complete the following proof that $a \equiv (a_r + \cdots + a_1 + a_0) \mod 9$. Be clear which modular arithmetic property is used for each equality!

Proof. Expressing a in terms of its digits a_0, a_1, \ldots, a_r , we obtain

$$[a]_{9} = [a_{r}(\underline{\qquad}) + \dots + a_{2}10^{2} + a_{1}10 + a_{0}]_{9}$$
$$= \underline{\qquad}$$
$$\vdots$$
$$= \underline{\qquad}$$

meaning $a \equiv (a_r + \cdots + a_1 + a_0) \mod 9$.

- (b) Prove that $9 \mid a$ if and only if the sum of the digits of a is divisible by 9.
- (c) Modify your proof in part (a) to prove that an integer a is divisible by 3 if and only if the sum of its digits (in base 10) is divisible by 3.
- (d) Using part (c), develop a criterion for when an integer is divisible by 15.
- (D3) The orders of elements of \mathbb{Z}_n . The order of an element $[a]_n \in \mathbb{Z}_n$ is the smallest integer k such that adding $[a]_n$ to itself k times yields $[0]_n$, that is $ka \equiv 0 \mod n$.
 - (a) Find the order of each element of \mathbb{Z}_{12} . Do the same for \mathbb{Z}_{10} .
 - (b) Conjecture a formula for the order of $[a]_n$ in terms of a and n.
 - (c) Let k denote your conjectured order for $[a]_n$. Prove $[k]_n[a]_n = 0$.
 - (d) Let k denote your conjectured order for $[a]_n$, and suppose $[c]_n[a]_n = 0$. Prove $k \mid c$.
 - (e) Prove that your conjectured order formula holds.
 - (f) For which n does every nonzero $[a]_n$ have order n? Give a (short and sweet) proof.

Homework problems. You must submit *all* homework problems in order to receive full credit. Unless otherwise stated, $a, b, c, n \in \mathbb{Z}$ are arbitrary, and $n \ge 2$.

(H1) Find all $x, y \in \mathbb{Z}_7$ that are solutions to both of the equations

 $x + [2]_7 y = [4]_7$ and $[4]_7 x + [3]_7 y = [4]_7$.

- (H2) Prove that an integer a is divisible by 8 if and only if the last three digits of a in base 10 form a 3-digit number that is divisible by 8.
- (H3) Prove $(a+b)^5 \equiv a^5 + b^5 \mod 5$ (this is a special case of the "Freshman's Dream" equation).
- (H4) (a) Suppose $(a_n \cdots a_1 a_0)_{10}$ expresses a in base 10. Prove that $13 \mid a$ if and only if

 $13 \mid (a_n \cdots a_1)_{10} + 4a_0.$

- (b) Use part (a) to decide whether 20192018 is divisible by 13.
- (H5) Determine whether each of the following is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) If $ac \equiv bc \mod n$ and $c \not\equiv 0 \mod n$, then $a \equiv b \mod n$.
 - (b) If $ab \equiv 0 \mod n$, then $a \equiv 0 \mod n$ or $b \equiv 0 \mod n$.
 - (c) If (a, n) = (b, n), then $a \equiv b \mod n$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Prove or disprove: if $a^2 \equiv b^2 \mod n$, then $a \equiv b \mod n$ or $-a \equiv b \mod n$.