Spring 2019, Math 320: Problem Set 7
 Due: Tuesday, March 19th, 2019
 Isomorphisms and Homomorphisms

Discussion problems. The problems below should be worked on in class.
(D1) Homomorphisms. The goal of this problem is to get practice with homomorphisms.
(a) Determine whether each of the following maps is a homomorphism.
(i) $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $\varphi(a)=a+3$.
(ii) $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $\varphi(a)=2 a$.
(iii) $\varphi: \mathbb{Z} \rightarrow M(\mathbb{R})$ given by $\varphi(a)=\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$.
(iv) $\varphi: R \rightarrow S$ given by $\varphi\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)=\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right)$, where $R, S \subset M(\mathbb{R})$ are the set of all upper triangular and lower triangular matrices, respectively.
(b) Consider the map $\varphi: \mathbb{R}[x] \rightarrow \mathbb{R}[y]$ given by

$$
\varphi\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right)=a_{0}+2 a_{1} y+4 a_{2} y^{2}+8 a_{3} y^{3}+\cdots
$$

for $a_{0}, a_{1}, \ldots, \in \mathbb{R}$. Prove φ is an isomorphism. (Remember: the elements of $\mathbb{R}[x]$ are polynomials in the variable x with real coefficients, for instance $x^{2}+5 x \in \mathbb{R}[x]$, $x^{3} \in \mathbb{R}[x]$, and $17 \in \mathbb{R}[x]$ are all distinct elements, and the elements of $\mathbb{R}[y]$ are similar but in a variable y).
(c) Suppose $\varphi: \mathbb{R}[x] \rightarrow \mathbb{R}[y]$ is an unspecified homomorphism. Suppose that $\varphi(x)=y+1$, but make no other assumptions (for instance, we aren't given what $\varphi\left(x^{2}\right)$ is).
(i) Find all possible values of $\varphi\left(x^{3}\right), \varphi\left(x^{2}+2 x\right)$, and $\varphi\left(x^{5}+9 x^{3}+91 x\right)$.
(ii) Fill in the details in the following proof that $\varphi(1)=1$.

Proof. Since φ is a homomorphism, we have

$$
\varphi(1) \cdot(y+1)=\varphi(1) \cdot \varphi(x)=\ldots=y+1
$$

Since $y+1$ is a nonzero element of $\mathbb{R}[y]$ and \qquad , cancellation yields $1=\varphi(1)$.
(iii) What must $\varphi(0)$ be? What about $\varphi(-x)$? Prove both of your claims.
(iv) What possible values can $\varphi(3)$ be? What about $\varphi(1 / 3)$? What about $\varphi(\sqrt{3})$?
(v) Conjecture how many possible maps φ exist (you do not need to prove it). For which constants a have we not determined what $\varphi(a)$ is?
(D2) Constructing isomorphisms. The goal of this problem is to get practice with isomorphisms.
(a) Prove each of the following.
(i) $\varphi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{3} \times \mathbb{Z}_{4}$ given by $\varphi\left([a]_{12}\right)=\left([a]_{3},[a]_{4}\right)$ is an isomorphism. Hint: be sure to prove φ is well-defined!
(ii) $\mathbb{R} \times \mathbb{R} \cong R$, where

$$
R=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right): a, b \in \mathbb{R}\right\} \subset M(\mathbb{R})
$$

(iii) $\mathbb{R} \cong(R, \oplus, \odot)$, where $R=\mathbb{R}_{>0}$,

$$
a \oplus b=a b \quad \text { and } \quad a \odot b=a^{\ln b}
$$

Hint: find 0_{R} and 1_{R}.
(iv) $\mathbb{Z} \cong R$, where $R \subset \mathbb{Z} \times \mathbb{Z}$ is a subring given by $R=\{(a, a) \in \mathbb{Z} \times \mathbb{Z}: a \in \mathbb{Z}\}$.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Determine whether each of the following maps is a homomorphism.
(a) $\varphi: \mathbb{Q} \rightarrow \mathbb{Q}$ given by $\varphi(0)=0$ and $\varphi(a)=\frac{1}{a}$ for all nonzero $a \in \mathbb{Q}$.
(b) $\varphi: M(\mathbb{R}) \rightarrow M(\mathbb{R})$ given by $\varphi\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ for all $a, b, c, d \in \mathbb{R}$.
(c) $\varphi: \mathbb{Z} \rightarrow M(\mathbb{R})$ given by $\varphi(a)=\left(\begin{array}{ll}a & a \\ a & a\end{array}\right)$.
(d) $\varphi: \mathbb{R}[x] \rightarrow \mathbb{R}$ given by $\varphi(f(x))=f(0)$ (for example, $\varphi\left(3 x^{2}+2\right)=2$).
(e) $\varphi: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{18}$ with $\varphi\left([a]_{6}\right)=[a]_{18}$ for all $a \in \mathbb{Z}$. Hint: check whether φ is well-defined!
(f) $\varphi: \mathbb{Z}_{18} \rightarrow \mathbb{Z}_{6}$ with $\varphi\left([a]_{18}\right)=[a]_{6}$ for all $a \in \mathbb{Z}$. Hint: check whether φ is well-defined!

