Spring 2019, Math 320: Problem Set 7 Due: Tuesday, March 19th, 2019 Isomorphisms and Homomorphisms

Discussion problems. The problems below should be worked on in class.

- (D1) Homomorphisms. The goal of this problem is to get practice with homomorphisms.
 - (a) Determine whether each of the following maps is a homomorphism.
 - (i) $\varphi : \mathbb{Z} \to \mathbb{Z}$ given by $\varphi(a) = a + 3$.
 - (ii) $\varphi : \mathbb{Z} \to \mathbb{Z}$ given by $\varphi(a) = 2a$.
 - (iii) $\varphi : \mathbb{Z} \to M(\mathbb{R})$ given by $\varphi(a) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$.
 - (iv) $\varphi: R \to S$ given by $\varphi \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$, where $R, S \subset M(\mathbb{R})$ are the set of all upper triangular and lower triangular matrices, respectively.
 - (b) Consider the map $\varphi : \mathbb{R}[x] \to \mathbb{R}[y]$ given by

$$\varphi(a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots) = a_0 + 2a_1y + 4a_2y^2 + 8a_3y^3 + \cdots$$

for $a_0, a_1, \ldots, \in \mathbb{R}$. Prove φ is an isomorphism. (Remember: the elements of $\mathbb{R}[x]$ are polynomials in the variable x with real coefficients, for instance $x^2 + 5x \in \mathbb{R}[x]$, $x^3 \in \mathbb{R}[x]$, and $17 \in \mathbb{R}[x]$ are all distinct elements, and the elements of $\mathbb{R}[y]$ are similar but in a variable y).

- (c) Suppose $\varphi : \mathbb{R}[x] \to \mathbb{R}[y]$ is an unspecified homomorphism. Suppose that $\varphi(x) = y + 1$, but **make no other assumptions** (for instance, we aren't given what $\varphi(x^2)$ is).
 - (i) Find all possible values of $\varphi(x^3)$, $\varphi(x^2+2x)$, and $\varphi(x^5+9x^3+91x)$.
 - (ii) Fill in the details in the following proof that $\varphi(1) = 1$.

Proof. Since φ is a homomorphism, we have

$$\varphi(1)\cdot(y+1)=\varphi(1)\cdot\varphi(x)=\underline{\hspace{1cm}}=\underline{\hspace{1cm}}=y+1.$$

Since y+1 is a nonzero element of $\mathbb{R}[y]$ and _____, cancellation yields $1=\varphi(1)$. \square

- (iii) What must $\varphi(0)$ be? What about $\varphi(-x)$? Prove both of your claims.
- (iv) What possible values can $\varphi(3)$ be? What about $\varphi(1/3)$? What about $\varphi(\sqrt{3})$?
- (v) Conjecture how many possible maps φ exist (you do **not** need to prove it). For which constants a have we not determined what $\varphi(a)$ is?
- (D2) Constructing isomorphisms. The goal of this problem is to get practice with isomorphisms.
 - (a) Prove each of the following.
 - (i) $\varphi: \mathbb{Z}_{12} \to \mathbb{Z}_3 \times \mathbb{Z}_4$ given by $\varphi([a]_{12}) = ([a]_3, [a]_4)$ is an isomorphism. Hint: be sure to prove φ is well-defined!
 - (ii) $\mathbb{R} \times \mathbb{R} \cong R$, where

$$R = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a, b \in \mathbb{R} \right\} \subset M(\mathbb{R})$$

(iii) $\mathbb{R} \cong (R, \oplus, \odot)$, where $R = \mathbb{R}_{>0}$,

$$a \oplus b = ab$$
 and $a \odot b = a^{\ln b}$.

Hint: find 0_R and 1_R .

(iv) $\mathbb{Z} \cong R$, where $R \subset \mathbb{Z} \times \mathbb{Z}$ is a subring given by $R = \{(a, a) \in \mathbb{Z} \times \mathbb{Z} : a \in \mathbb{Z}\}.$

Homework problems. You must submit all homework problems in order to receive full credit.

- (H1) Determine whether each of the following maps is a homomorphism.
 - (a) $\varphi: \mathbb{Q} \to \mathbb{Q}$ given by $\varphi(0) = 0$ and $\varphi(a) = \frac{1}{a}$ for all nonzero $a \in \mathbb{Q}$.
 - (b) $\varphi: M(\mathbb{R}) \to M(\mathbb{R})$ given by $\varphi \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ for all $a,b,c,d \in \mathbb{R}$.
 - (c) $\varphi : \mathbb{Z} \to M(\mathbb{R})$ given by $\varphi(a) = \begin{pmatrix} a & a \\ a & a \end{pmatrix}$.
 - (d) $\varphi : \mathbb{R}[x] \to \mathbb{R}$ given by $\varphi(f(x)) = f(0)$ (for example, $\varphi(3x^2 + 2) = 2$).
 - (e) $\varphi: \mathbb{Z}_6 \to \mathbb{Z}_{18}$ with $\varphi([a]_6) = [a]_{18}$ for all $a \in \mathbb{Z}$. Hint: check whether φ is well-defined!
 - (f) $\varphi: \mathbb{Z}_{18} \to \mathbb{Z}_6$ with $\varphi([a]_{18}) = [a]_6$ for all $a \in \mathbb{Z}$. Hint: check whether φ is well-defined!