Spring 2019, Math 320: Problem Set 8
 Due: Tuesday, March 26th, 2019 Catch-up Week

Discussion problems. The problems below should be worked on in class.
(D1) Review Problems. The goal of this problem is to review content covered up to this point. Within your group, have each person vote on 2 parts of this problem to work though together. Work through the parts in order of popularity.
(a) Locate a matrix J in the ring

$$
S=\left\{\left(\begin{array}{ll}
a & a \\
b & b
\end{array}\right) \in M(\mathbb{R}): a, b, \in \mathbb{R}\right\}
$$

that is a right multiplicative identity (that is, $A J=A$ for every $A \in S$).
(b) Prove or disprove: for all $a, b, c \in \mathbb{Z}$ and $n \geq 2$, if $[a]_{n}[b]_{n}=[a]_{n}[c]_{n}$, then $[b]_{n}=[c]_{n}$.
(c) Prove that if $2^{p}-1$ is prime, then p is prime. Hint: prove the contrapositive.
(d) Using only one axiom at a time, prove that if R is a ring with elements $a, b, c, d \in R$ satisfying $a-b=c-d$, then $a+d=b+c$.
(e) Fix a homomorphism $\varphi: R \rightarrow S$. Prove that the image of φ, that is,

$$
\operatorname{Im}(\varphi)=\{\phi(r): r \in R\}
$$

is a subring of S.
(D2) Constructing isomorphisms. The goal of this problem is to get practice with isomorphisms.
(a) Prove each of the following.
(i) $\phi: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{3} \times \mathbb{Z}_{4}$ given by $\phi\left([a]_{12}\right)=\left([a]_{3},[a]_{4}\right)$ is an isomorphism. Hint: be sure to prove ϕ is well-defined!
(ii) $\mathbb{R} \times \mathbb{R} \cong R$, where

$$
R=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right): a, b \in \mathbb{R}\right\} \subset M(\mathbb{R})
$$

(iii) $\mathbb{Z} \cong(R, \oplus, \odot)$, where $R=\mathbb{Z}$,

$$
a \oplus b=a+b+1 \quad \text { and } \quad a \odot b=a b+a+b
$$

for all $a, b \in R$. Hint: find 0_{R} and 1_{R}.
(iv) $\mathbb{Z} \cong R$, where $R=\{(a, a): a \in \mathbb{Z}\} \subset \mathbb{Z} \times \mathbb{Z}$.
(b) Determine which of the following statements are true, and prove your assertions.
(i) $\mathbb{Z} \cong 2 \mathbb{Z}$, where $2 \mathbb{Z}$ denotes the set of even integers.
(ii) $\mathbb{Z}_{19} \cong \mathbb{Z}_{17}$.
(iii) \mathbb{Z}_{6} is isomorphic to some subring of $M(\mathbb{R})$.
(iv) \mathbb{Z}_{3} is isomorphic to some subring of \mathbb{Z}_{6}.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Suppose p is prime. Prove if $a^{2} \equiv b^{2} \bmod p$, then either $a \equiv b \bmod p$ or $a \equiv-b \bmod p$.
(H2) Is

$$
R=\left\{\left(\begin{array}{ll}
a & a \\
0 & a
\end{array}\right): a \in \mathbb{R}\right\} \subset M(\mathbb{R})
$$

a subring of $M(\mathbb{R})$?
(H3) Consider the set $T=2 \mathbb{Z}$ of even integers, and operations \oplus and \odot given by

$$
a \oplus b=a+b \quad \text { and } \quad a \odot b=a b / 2
$$

for $a, b \in R$.
(a) Locate the additive and multiplicative identities of T.
(b) Prove that (T, \oplus, \odot) is closed under multiplication, satisfies the distributivity axiom, and that every element of T has an additive inverse.
(H4) Suppose R is a ring and $a \in R$ is nonzero and not a zero-divisor. Prove that if $a b=a c$, then $b=c$. Note: in this problem, use only one axiom in each step (no theorems!).
(H5) Let (T, \oplus, \odot) denote the ring from Problem (H3) above (you may assume in this problem that T is a ring $)$. Prove $T \cong(\mathbb{Z},+, \cdot)$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Determine whether $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \cong M(\mathbb{R})$.

