Spring 2019, Math 320: Problem Set 8 Due: Tuesday, March 26th, 2019 Catch-up Week

Discussion problems. The problems below should be worked on in class.

- (D1) Review Problems. The goal of this problem is to review content covered up to this point. Within your group, have each person vote on 2 parts of this problem to work though together. Work through the parts in order of popularity.
 - (a) Locate a matrix J in the ring

$$S = \left\{ \begin{pmatrix} a & a \\ b & b \end{pmatrix} \in M(\mathbb{R}) : a, b, \in \mathbb{R} \right\}$$

that is a right multiplicative identity (that is, AJ = A for every $A \in S$).

- (b) Prove or disprove: for all $a, b, c \in \mathbb{Z}$ and $n \ge 2$, if $[a]_n [b]_n = [a]_n [c]_n$, then $[b]_n = [c]_n$.
- (c) Prove that if $2^p 1$ is prime, then p is prime. Hint: prove the contrapositive.
- (d) Using only **one axiom at a time**, prove that if R is a ring with elements $a, b, c, d \in R$ satisfying a b = c d, then a + d = b + c.
- (e) Fix a homomorphism $\varphi: R \to S$. Prove that the image of φ , that is,

$$\operatorname{Im}(\varphi) = \{\phi(r) : r \in R\},\$$

is a subring of S.

- (D2) Constructing isomorphisms. The goal of this problem is to get practice with isomorphisms.
 - (a) Prove each of the following.
 - (i) $\phi : \mathbb{Z}_{12} \to \mathbb{Z}_3 \times \mathbb{Z}_4$ given by $\phi([a]_{12}) = ([a]_3, [a]_4)$ is an isomorphism. Hint: be sure to prove ϕ is well-defined!
 - (ii) $\mathbb{R} \times \mathbb{R} \cong R$, where

$$R = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a, b \in \mathbb{R} \right\} \subset M(\mathbb{R})$$

(iii) $\mathbb{Z} \cong (R, \oplus, \odot)$, where $R = \mathbb{Z}$,

 $a \oplus b = a + b + 1$ and $a \odot b = ab + a + b$.

for all $a, b \in R$. Hint: find 0_R and 1_R .

- (iv) $\mathbb{Z} \cong R$, where $R = \{(a, a) : a \in \mathbb{Z}\} \subset \mathbb{Z} \times \mathbb{Z}$.
- (b) Determine which of the following statements are true, and prove your assertions.
 - (i) $\mathbb{Z} \cong 2\mathbb{Z}$, where $2\mathbb{Z}$ denotes the set of even integers.
 - (ii) $\mathbb{Z}_{19} \cong \mathbb{Z}_{17}$.
 - (iii) \mathbb{Z}_6 is isomorphic to some subring of $M(\mathbb{R})$.
 - (iv) \mathbb{Z}_3 is isomorphic to **some** subring of \mathbb{Z}_6 .

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Suppose p is prime. Prove if $a^2 \equiv b^2 \mod p$, then either $a \equiv b \mod p$ or $a \equiv -b \mod p$.
- (H2) Is

$$R = \left\{ \begin{pmatrix} a & a \\ 0 & a \end{pmatrix} : a \in \mathbb{R} \right\} \subset M(\mathbb{R})$$

a subring of $M(\mathbb{R})$?

(H3) Consider the set $T = 2\mathbb{Z}$ of even integers, and operations \oplus and \odot given by

$$a \oplus b = a + b$$
 and $a \odot b = ab/2$

for $a, b \in R$.

- (a) Locate the additive and multiplicative identities of T.
- (b) Prove that (T, \oplus, \odot) is closed under multiplication, satisfies the distributivity axiom, and that every element of T has an additive inverse.
- (H4) Suppose R is a ring and $a \in R$ is nonzero and **not** a zero-divisor. Prove that if ab = ac, then b = c. Note: in this problem, use only one **axiom** in each step (no theorems!).
- (H5) Let (T, \oplus, \odot) denote the ring from Problem (H3) above (you may assume in this problem that T is a ring). Prove $T \cong (\mathbb{Z}, +, \cdot)$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Determine whether $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \cong M(\mathbb{R})$.