Spring 2019, Math 320: Week 9 Problem Set Due: Tuesday, April 9, 2019 Polynomial Rings and Divisibility

Discussion problems. The problems below should be worked on in class.

- (D1) Divisibility in $\mathbb{Q}[x]$ and $\mathbb{Z}_p[x]$.
 - (a) First, divide $a(x) = 2x^5 x^4 + 3x^3 + 2x^2 + x + 1$ by $b(x) = 2x^2 + x + 1$ over \mathbb{Q} . Next, divide a(x) by b(x) over \mathbb{Z}_7 . How are your answers related?
 - (b) Divide $a(x) = x^4 + x^3 + 2x^2 + x + 1$ by $b(x) = x^2 + 1$ over \mathbb{Q} . Without doing another division, decide whether you would get a remainder if you divided over \mathbb{Z}_5 .
 - (c) Determine whether b(x) = x + 2 divides $a(x) = x^3 + 3x^2 4$ over \mathbb{Q} without dividing over \mathbb{Q} (you may divide over $\mathbb{Z}_2, \mathbb{Z}_3, \ldots$).
- (D2) The polynomial ring $\mathbb{Z}_n[x]$. The goal of this problem is to identify some "nice" properties that R[x] can fail to have when R is not a field.
 - (a) Which elements of $\mathbb{Z}_3[x]$ are units?
 - (b) Find a unit in $\mathbb{Z}_4[x]$ with positive degree.
 - (c) What is the highest degree a zero-divisor can have in $\mathbb{Z}_6[x]$?
 - (d) Find an element of $\mathbb{Z}_6[x]$ that is **not** a zero-divisor, but whose leading coefficient **is** a zero-divisor of \mathbb{Z}_6 .
 - (e) Characterize the zero-divisors of $\mathbb{Z}_4[x]$. State your claim formally, and prove it!
 - (f) Find gcd(84, 32) using the Euclidean algorithm. Note: this is a week 1 question!
 - (g) Use the Euclidean algorithm to find the greatest common divisor of

$$f(x) = x^3 + 3x^2 + 2x - 1$$
 and $g(x) = x^3 - 2x + 1$

in $\mathbb{Q}[x]$. Do the same in $\mathbb{Z}_5[x]$.

- (h) Find a non-constant polynomial $f(x) \in \mathbb{Z}_6[x]$ such that $f(x) \mid 2x$ and $f(x) \mid 4x$. What is the highest degree f(x) can have? (Note that the Euclidean algorithm can't be used here.)
- (D3) Similarities between F[x] and \mathbb{Z} . In what follows, assume F is a field.
 - (a) Below is a (correct!) proof that if $a, b, c \in \mathbb{Z}$ with $a \mid bc$ and gcd(a, b) = 1, then $a \mid c$.

Proof. Since $a \mid bc$ and gcd(a,b) = 1, there exist $m \in \mathbb{Z}$ and $x,y \in \mathbb{Z}$ satisfying am = bc and ax + by = 1. As such, c = acx + bcy = acx + amy = a(cx + my), so $a \mid c$.

Prove if $a(x), b(x), c(x) \in F[x]$ with $a(x) \mid b(x)c(x)$ and gcd(a(x), b(x)) = 1, then $a(x) \mid c(x)$.

(b) Fill in the gaps in the proof that if $a, b, c \in \mathbb{Z}$ with c > 0, then gcd(ca, cb) = c gcd(a, b). Identify where the hypothesis c > 0 is used.

Proof. Let $d = \gcd(a, b)$, so a = md and b = nd for some $m, n \in \mathbb{Z}$. This means _____ and ____, so $cd \mid ca$ and $cd \mid cb$. Moreover, ax + by = d for some $x, y \in \mathbb{Z}$, so _____, meaning $cd = \gcd(ca, cb)$.

(c) State and prove an analogous result to part (b) for elements of F[x].

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Consider the polynomials $f(x) = x^5 + 3x^4 7x^3 + 5x + 4$ and $g(x) = 2x^2 + x + 5$. Use the division algorithm to divide f(x) by g(x) over \mathbb{Z}_3 . Do the same over \mathbb{Z}_{11} . Do your answers allow you to conclude whether g(x) divides f(x) over \mathbb{Q} ?
- (H2) Find the greatest common divisor of $f(x) = x^6 + x^4 + x^2$ and $g(x) = x^4 + x^3 + x$ over \mathbb{Z}_3 using the Euclidean algorithm.
- (H3) Determine which elements of $\mathbb{Z}_6[x]$ with degree 1 are units, and which are zero-divisors. Reminder: 2x + 3 and 5x both have degree 1, but 4 does not.
- (H4) Locate specific $a(x), b(x) \in \mathbb{Z}[x]$ with $b(x) \neq 0$ such that it is impossible to write

$$a(x) = q(x)b(x) + r(x)$$

with $q(x), r(x) \in \mathbb{Z}[x]$ and $\deg r(x) < \deg b(x)$. Why does this not contradict Theorem 4.6?

- (H5) Suppose F is a field. Prove that if $a, b \in F$ with $a \neq b$, then gcd(x + a, x + b) = 1.
- (H6) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) If R is a ring and $a \in R$ is a unit, then a is also a unit in R[x].
 - (b) If R is a ring and $a \in R$ is a zero-divisor, then a is also a zero-divisor in R[x].
 - (c) If R is a ring and $f(x), g(x) \in R[x]$, then $\deg(f(x)g(x)) = (\deg f(x))(\deg g(x))$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Fix an integral domain R. Suppose that the division algorithm always holds for R[x] (that is, for every a(x), $b(x) \in R[x]$ with $b(x) \neq 0$, there exist unique q(x), $r(x) \in R[x]$ with $\deg r(x) < \deg b(x)$ such that a(x) = q(x)b(x) + r(x) holds). Prove that R is a field.