Spring 2019, Math 320: Week 9 Problem Set
 Due: Tuesday, April 9, 2019
 Polynomial Rings and Divisibility

Discussion problems. The problems below should be worked on in class.
(D1) Divisibility in $\mathbb{Q}[x]$ and $\mathbb{Z}_{p}[x]$.
(a) First, divide $a(x)=2 x^{5}-x^{4}+3 x^{3}+2 x^{2}+x+1$ by $b(x)=2 x^{2}+x+1$ over \mathbb{Q}. Next, divide $a(x)$ by $b(x)$ over \mathbb{Z}_{7}. How are your answers related?
(b) Divide $a(x)=x^{4}+x^{3}+2 x^{2}+x+1$ by $b(x)=x^{2}+1$ over \mathbb{Q}. Without doing another division, decide whether you would get a remainder if you divided over \mathbb{Z}_{5}.
(c) Determine whether $b(x)=x+2$ divides $a(x)=x^{3}+3 x^{2}-4$ over \mathbb{Q} without dividing over \mathbb{Q} (you may divide over $\mathbb{Z}_{2}, \mathbb{Z}_{3}, \ldots$).
(D2) The polynomial ring $\mathbb{Z}_{n}[x]$. The goal of this problem is to identify some "nice" properties that $R[x]$ can fail to have when R is not a field.
(a) Which elements of $\mathbb{Z}_{3}[x]$ are units?
(b) Find a unit in $\mathbb{Z}_{4}[x]$ with positive degree.
(c) What is the highest degree a zero-divisor can have in $\mathbb{Z}_{6}[x]$?
(d) Find an element of $\mathbb{Z}_{6}[x]$ that is not a zero-divisor, but whose leading coefficient is a zero-divisor of \mathbb{Z}_{6}.
(e) Characterize the zero-divisors of $\mathbb{Z}_{4}[x]$. State your claim formally, and prove it!
(f) Find $\operatorname{gcd}(84,32)$ using the Euclidean algorithm. Note: this is a week 1 question!
(g) Use the Euclidean algorithm to find the greatest common divisor of

$$
f(x)=x^{3}+3 x^{2}+2 x-1 \quad \text { and } \quad g(x)=x^{3}-2 x+1
$$

in $\mathbb{Q}[x]$. Do the same in $\mathbb{Z}_{5}[x]$.
(h) Find a non-constant polynomial $f(x) \in \mathbb{Z}_{6}[x]$ such that $f(x) \mid 2 x$ and $f(x) \mid 4 x$. What is the highest degree $f(x)$ can have? (Note that the Euclidean algorithm can't be used here.)
(D3) Similarities between $F[x]$ and \mathbb{Z}. In what follows, assume F is a field.
(a) Below is a (correct!) proof that if $a, b, c \in \mathbb{Z}$ with $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.

Proof. Since $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, there exist $m \in \mathbb{Z}$ and $x, y \in \mathbb{Z}$ satsifying $a m=b c$ and $a x+b y=1$. As such, $c=a c x+b c y=a c x+a m y=a(c x+m y)$, so $a \mid c$.

Prove if $a(x), b(x), c(x) \in F[x]$ with $a(x) \mid b(x) c(x)$ and $\operatorname{gcd}(a(x), b(x))=1$, then $a(x) \mid c(x)$.
(b) Fill in the gaps in the proof that if $a, b, c \in \mathbb{Z}$ with $c>0$, then $\operatorname{gcd}(c a, c b)=c \operatorname{gcd}(a, b)$. Identify where the hypothesis $c>0$ is used.

Proof. Let $d=\operatorname{gcd}(a, b)$, so $a=m d$ and $b=n d$ for some $m, n \in \mathbb{Z}$. This means
\qquad and \qquad , so $c d \mid c a$ and $c d \mid c b$. Moreover, $a x+b y=d$ for some $x, y \in \mathbb{Z}$,
so \qquad , meaning $c d=\operatorname{gcd}(c a, c b)$.
(c) State and prove an analogous result to part (b) for elements of $F[x]$.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Consider the polynomials $f(x)=x^{5}+3 x^{4}-7 x^{3}+5 x+4$ and $g(x)=2 x^{2}+x+5$. Use the division algorithm to divide $f(x)$ by $g(x)$ over \mathbb{Z}_{3}. Do the same over \mathbb{Z}_{11}. Do your answers allow you to conclude whether $g(x)$ divides $f(x)$ over \mathbb{Q} ?
(H2) Find the greatest common divisor of $f(x)=x^{6}+x^{4}+x^{2}$ and $g(x)=x^{4}+x^{3}+x$ over \mathbb{Z}_{3} using the Euclidean algorithm.
(H3) Determine which elements of $\mathbb{Z}_{6}[x]$ with degree 1 are units, and which are zero-divisors. Reminder: $2 x+3$ and $5 x$ both have degree 1 , but 4 does not.
(H4) Locate specific $a(x), b(x) \in \mathbb{Z}[x]$ with $b(x) \neq 0$ such that it is impossible to write

$$
a(x)=q(x) b(x)+r(x)
$$

with $q(x), r(x) \in \mathbb{Z}[x]$ and $\operatorname{deg} r(x)<\operatorname{deg} b(x)$. Why does this not contradict Theorem 4.6?
(H5) Suppose F is a field. Prove that if $a, b \in F$ with $a \neq b$, then $\operatorname{gcd}(x+a, x+b)=1$.
(H6) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If R is a ring and $a \in R$ is a unit, then a is also a unit in $R[x]$.
(b) If R is a ring and $a \in R$ is a zero-divisor, then a is also a zero-divisor in $R[x]$.
(c) If R is a ring and $f(x), g(x) \in R[x]$, then $\operatorname{deg}(f(x) g(x))=(\operatorname{deg} f(x))(\operatorname{deg} g(x))$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Fix an integral domain R. Suppose that the division algorithm always holds for $R[x]$ (that is, for every $a(x), b(x) \in R[x]$ with $b(x) \neq 0$, there exist unique $q(x), r(x) \in R[x]$ with $\operatorname{deg} r(x)<\operatorname{deg} b(x)$ such that $a(x)=q(x) b(x)+r(x)$ holds). Prove that R is a field.

