Spring 2019, Math 320: Week 10 Problem Set Due: Tuesday, April 16th, 2019 Polynomial Factorization and Irreducibility

Discussion problems. The problems below should be worked on in class.

- (D1) Factoring polynomials over \mathbb{Z}_n .
 - (a) Compare your answers to (P1). Over each ring, compare $\deg f(x)$ to the number of roots, and check these against Corollary 4.17.
 - (b) Find all roots of 3x + 3 over \mathbb{Z}_6 . Why is this surprising?
 - (c) Find a linear (i.e. degree 1) polynomial over \mathbb{Z}_6 with no solutions.
 - (d) Consider $f(x) = x^2 x = (x)(x-1)$ over \mathbb{Z}_6 . Find all roots of f(x) and the roots of its factors x and x-1. What do you notice? Relate this to the root theorem.
 - (e) Factor $f(x) = x^3 + 3x + 1$ and $g(x) = x^3 + 3x^2 + 2x + 4$ over \mathbb{Z}_5 as products of irreducibles. Hint: we can use the root theorem when the degree is at most 3.
 - (f) Factor $x^4 + x^3 + 2x^2 + 2x + 1$ over \mathbb{Z}_3 . Does it suffice to look for roots?
 - (g) Show that $a(x) = x^4 + x^3 + x^2 + x + 1$ is irreducible over \mathbb{Z}_2 . Why is it **not** enough to verify a(x) has no roots? Hint: write $a(x) = (x^2 + Ax + B)(x^2 + Cx + D)$ and prove no choice of A, B, C, and D works.
 - (h) Factor $x^5 + 1$ over \mathbb{Z}_5 . Do the same over \mathbb{Z}_2 .
- (D2) Similarities between F[x] and \mathbb{Z} . In what follows, assume F is a field.
 - (a) Below is a (correct!) proof that if $a, b, c \in \mathbb{Z}$ with $a \mid bc$ and gcd(a, b) = 1, then $a \mid c$.

Proof. Since $a \mid bc$ and gcd(a,b) = 1, there exist $m \in \mathbb{Z}$ and $x,y \in \mathbb{Z}$ satisfying am = bc and ax + by = 1. As such,

$$c = acx + bcy = acx + amy = a(cx + my),$$

so
$$a \mid c$$
.

Copy the above proof onto the board. Then, prove that if $a(x), b(x), c(x) \in F[x]$ with $a(x) \mid b(x)c(x)$ and $\gcd(a(x), b(x)) = 1$, then $a(x) \mid c(x)$.

(b) Fill in the gaps in the proof that if $a, b, c \in \mathbb{Z}$ with c > 0, then gcd(ca, cb) = c gcd(a, b). Identify where the hypothesis c > 0 is used.

Proof. Let $d = \gcd(a, b)$, so a = md and b = nd for some $m, n \in \mathbb{Z}$. This means _____ and ____, so $cd \mid ca$ and $cd \mid cb$. Moreover, ax + by = d for some $x, y \in \mathbb{Z}$, so _____, meaning $cd = \gcd(ca, cb)$.

- (c) State and prove an analogous result to part (b) for elements of F[x].
- (d) Complete the following proof that if $a(x), b(x) \in F[x]$ satisfy $a(x) \mid b(x)$ and $b(x) \mid a(x)$, then b(x) = Ca(x) for some $C \in F$.

Proof. Since $a(x) \mid b(x)$, we have b(x) = a(x)f(x) for some $f(x) \in F[x]$, and since $b(x) \mid a(x)$, we have ______. This means

$$\deg b(x) = \deg f(x) + \deg a(x) \ge \deg a(x) = \underline{\hspace{1cm}} \ge \deg b(x),$$

so $\deg b(x) = \deg \underline{\hspace{1cm}}$ and $\deg f(x) = 0$. Choosing $C = \underline{\hspace{1cm}}$ completes the proof. \square

Homework problems. You must submit all homework problems in order to receive full credit.

- (H1) Factor $f(x) = x^3 + 6x^2 + 1$ over \mathbb{Z}_3 , \mathbb{Z}_5 , and \mathbb{Z}_7 . Based on this, does f(x) factor over \mathbb{Q} ?
- (H2) Factor $f(x) = x^5 + 4x^4 + 8x^3 + 11x$ over \mathbb{Q} . Be sure to prove your factors are irreducible! Hint: first try to factor f(x) over \mathbb{Z}_3 and \mathbb{Z}_5 .
- (H3) Find all monic irreducible polynomials in $\mathbb{Z}_2[x]$ of degree at most 4. Hint: be systematic!
- (H4) Factor $x^4 x$, $x^8 x$, and $x^{16} x$ over \mathbb{Z}_2 . How does your answer relate to Problem (H3)?
- (H5) Suppose p > 0 is prime, and $f(x) \in \mathbb{Z}_p[x]$. Prove that there are infinitely many polynomials g(x) such that f(a) = g(a) for all $a \in \mathbb{Z}_p$.

Hint: first find a polynomial g(x) with positive degree such that g(a) = 0 for all $a \in \mathbb{Z}_p$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Consider the set

$$R = \{a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Q}[x] : a_0 \in \mathbb{Z}\}\$$

of polynomials over $\mathbb Q$ with integer constant term.

- (a) Prove that R is a subring of $\mathbb{Q}[x]$.
- (b) Show that $f(x) = x \in R$ cannot be factored as a finite product of irreducibles.
- (C2) Consider the set

$$R = \{a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Q}[x] : a_1 = 0\}$$

of polynomials over \mathbb{Q} with no linear term.

- (a) Prove that R is a subring of $\mathbb{Q}[x]$.
- (b) Show that $f(x) = x^6 \in R$ can be factored as a product of irreducibles in more than one way (that is, the factors are not simply associates of one another).