Spring 2019, Math 320: Week 12 Problem Set
 Due: Tuesday, April 30th, 2019
 Congruence Classes in $F[x]$ (Week 2)

Discussion problems. The problems below should be worked on in class.
(D1) Polynomial quotients over \mathbb{Z}_{n}.
(a) Consider the ring $R=\mathbb{Z}_{2}[x] /\left\langle x^{2}+1\right\rangle$.
(i) List every element of R. Identify 0_{R} and 1_{R}.
(ii) Write down the operation tables for R.
(iii) Is R an integral domain? Is R a field?
(b) Answer the same questions for the ring $T=\mathbb{Z}_{2}[x] /\left\langle x^{2}+x+1\right\rangle$. Is it possible $R \cong T$?
(c) Demonstrate $[x-1] \in \mathbb{Z}_{7}[x] /\left\langle x^{2}-3 x+2\right\rangle$ is a zero-divisor.
(d) Demonstrate $\left[x^{2}-1\right] \in \mathbb{Z}_{7}[x] /\left\langle x^{2}-3 x+2\right\rangle$ is a zero-divisor.
(e) Demonstrate $[x+1] \in \mathbb{Z}_{3}[x] /\left\langle x^{2}-2 x+1\right\rangle$ is a unit.
(f) Determine whether $\left[x^{2}+1\right] \in \mathbb{Z}_{5}[x] /\left\langle x^{3}-2 x^{2}+x\right\rangle$ is a zero-divisor, a unit, or neither.
(g) Determine whether $\left[x^{2}+4\right] \in \mathbb{Z}_{5}[x] /\left\langle x^{3}-2 x^{2}+x\right\rangle$ is a zero-divisor, a unit, or neither.
(h) Locate a field F with exactly 4 elements (hint: look at parts (a) and (b)). Additionally, locate a field with 8 elements, a field with 9 elements, and a field with 27 elements.
(D2) Reducibility and quotient rings. Unless otherwise stated, assume F is an arbitrary field.
(a) Prove or disprove: in $F[x] /\langle p(x)\rangle$, if $[a(x)][b(x)]=[a(x)][c(x)]$, then $[b(x)]=[c(x)]$. Hint: consider the analogous question in \mathbb{Z}_{n} first.
(b) Suppose $p(x) \in F[x]$ is reducible. Prove that $F[x] /\langle p(x)\rangle$ is not an integral domain. Hint: look at parts (c) and (d) of Problem (D1).
(c) Locate and correct the error in the following proof that if $p(x) \in F[x]$ is irreducible, then $R=F[x] /\langle p(x)\rangle$ is a field.
Hint: there is a single adjective that can be added to fix the proof.
Proof. We must show each $[f(x)] \in R$ with $[f(x)] \neq[0]$ has a multiplicative inverse. Since $p(x)$ is irreducible, its only divisors are 1 and $p(x)$, and since $[f(x)] \neq[0]$, we have $p(x) \nmid f(x)$. This means $\operatorname{gcd}(f(x), p(x))=1$, so $1=f(x) u(x)+p(x) v(x)$ for some $u(x), v(x) \in F[x]$. As such,

$$
[f(x)][u(x)]=[f(x)][u(x)]+[p(x)][v(x)]=[f(x) u(x)+p(x) v(x)]=[1]
$$

which completes the proof.
(d) Relate parts (b) and (c) to familiar theorems for \mathbb{Z}_{n}.
(e) Find a polynomial $p(x)$ that is irreducible over \mathbb{Q} but reducible over \mathbb{R}. What does this mean about the rings $\mathbb{Q}[x] /\langle p(x)\rangle$ and $\mathbb{R}[x] /\langle p(x)\rangle$?

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Let $R=\mathbb{Z}_{2}[x] /\left\langle x^{3}+x+1\right\rangle$. Find a specific element $r \in R$ such that $R \backslash\{0\}=\left\{r, r^{2}, r^{3}, \ldots\right\}$ (that is, so that every nonzero element of R is a power of r).
Hint: start by listing all of the elements of R.
(H2) Let $R_{1}=\mathbb{Z}_{2}[x] /\left\langle x^{2}\right\rangle$ and $R_{2}=\mathbb{Z}_{2}[z] /\left\langle z^{2}+1\right\rangle$. Prove $R_{1} \cong R_{2}$.
Hint: write out the addition and multiplication tables for each ring, as they can be used to find an isomorphism $\phi: R_{1} \rightarrow R_{2}$ and to verify it is indeed an isomorphism.
(H3) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) The ring $R=\mathbb{Z}_{4}[x] /\left\langle x^{2}+1\right\rangle$ contains no zero-divisors.
(b) The ring $R=\mathbb{Z}_{5}[x] /\left\langle x^{2}+1\right\rangle$ contains no zero-divisors.
(c) The ring $R=\mathbb{Z}_{2}[x] /\left\langle x^{2}+x+1\right\rangle$ is isomorphic to \mathbb{Z}_{4}.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Let

$$
F=\mathbb{Z}_{2}[x] /\left\langle x^{3}+x+1\right\rangle \quad \text { and } \quad F^{\prime}=\mathbb{Z}_{2}[z] /\left\langle z^{3}+z^{2}+1\right\rangle
$$

Find an isomorphism $\varphi: F \rightarrow F^{\prime}$.

