Spring 2019, Math 320: Week 12 Problem Set Due: Tuesday, April 30th, 2019 Congruence Classes in F[x] (Week 2)

Discussion problems. The problems below should be worked on in class.

- (D1) Polynomial quotients over \mathbb{Z}_n .
 - (a) Consider the ring $R = \mathbb{Z}_2[x]/\langle x^2 + 1 \rangle$.
 - (i) List every element of R. Identify 0_R and 1_R .
 - (ii) Write down the operation tables for R.
 - (iii) Is R an integral domain? Is R a field?
 - (b) Answer the same questions for the ring $T = \mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle$. Is it possible $R \cong T$?
 - (c) Demonstrate $[x-1] \in \mathbb{Z}_7[x]/\langle x^2 3x + 2 \rangle$ is a zero-divisor.
 - (d) Demonstrate $[x^2 1] \in \mathbb{Z}_7[x]/\langle x^2 3x + 2 \rangle$ is a zero-divisor.
 - (e) Demonstrate $[x+1] \in \mathbb{Z}_3[x]/\langle x^2 2x + 1 \rangle$ is a unit.
 - (f) Determine whether $[x^2 + 1] \in \mathbb{Z}_5[x]/\langle x^3 2x^2 + x \rangle$ is a zero-divisor, a unit, or neither.
 - (g) Determine whether $[x^2 + 4] \in \mathbb{Z}_5[x]/\langle x^3 2x^2 + x \rangle$ is a zero-divisor, a unit, or neither.
 - (h) Locate a field F with exactly 4 elements (hint: look at parts (a) and (b)). Additionally, locate a field with 8 elements, a field with 9 elements, and a field with 27 elements.
- (D2) Reducibility and quotient rings. Unless otherwise stated, assume F is an arbitrary field.
 - (a) Prove or disprove: in $F[x]/\langle p(x)\rangle$, if [a(x)][b(x)] = [a(x)][c(x)], then [b(x)] = [c(x)]. Hint: consider the analogous question in \mathbb{Z}_n first.
 - (b) Suppose $p(x) \in F[x]$ is reducible. Prove that $F[x]/\langle p(x) \rangle$ is not an integral domain. Hint: look at parts (c) and (d) of Problem (D1).
 - (c) Locate and correct the error in the following proof that if $p(x) \in F[x]$ is irreducible, then $R = F[x]/\langle p(x) \rangle$ is a field.

Hint: there is a single adjective that can be added to fix the proof.

Proof. We must show each $[f(x)] \in R$ with $[f(x)] \neq [0]$ has a multiplicative inverse. Since p(x) is irreducible, its only divisors are 1 and p(x), and since $[f(x)] \neq [0]$, we have $p(x) \nmid f(x)$. This means gcd(f(x), p(x)) = 1, so 1 = f(x)u(x) + p(x)v(x) for some $u(x), v(x) \in F[x]$. As such,

$$[f(x)][u(x)] = [f(x)][u(x)] + [p(x)][v(x)] = [f(x)u(x) + p(x)v(x)] = [1],$$

which completes the proof.

- (d) Relate parts (b) and (c) to familiar theorems for \mathbb{Z}_n .
- (e) Find a polynomial p(x) that is irreducible over \mathbb{Q} but reducible over \mathbb{R} . What does this mean about the rings $\mathbb{Q}[x]/\langle p(x)\rangle$ and $\mathbb{R}[x]/\langle p(x)\rangle$?

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Let $R = \mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle$. Find a **specific** element $r \in R$ such that $R \setminus \{0\} = \{r, r^2, r^3, \ldots\}$ (that is, so that every nonzero element of R is a power of r). Hint: start by listing all of the elements of R.
- (H2) Let $R_1 = \mathbb{Z}_2[x]/\langle x^2 \rangle$ and $R_2 = \mathbb{Z}_2[z]/\langle z^2 + 1 \rangle$. Prove $R_1 \cong R_2$. Hint: write out the addition and multiplication tables for each ring, as they can be used to find an isomorphism $\phi : R_1 \to R_2$ and to verify it is indeed an isomorphism.
- (H3) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) The ring $R = \mathbb{Z}_4[x]/\langle x^2 + 1 \rangle$ contains no zero-divisors.
 - (b) The ring $R = \mathbb{Z}_5[x]/\langle x^2 + 1 \rangle$ contains no zero-divisors.
 - (c) The ring $R = \mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle$ is isomorphic to \mathbb{Z}_4 .

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Let

$$F = \mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle$$
 and $F' = \mathbb{Z}_2[z]/\langle z^3 + z^2 + 1 \rangle.$

Find an isomorphism $\varphi: F \to F'$.