## Spring 2019, Math 596: Problem Set 1 <br> Due: Tuesday, February 5th, 2019 <br> Numerical Semigroups

Discussion problems. The problems below should be worked on in class.
(D1) Warmup. In what follows, let $S=\langle 5,7\rangle$. Do the following as a group.
(a) Find $\mathrm{m}(S)$ and $\mathrm{e}(S)$.
(b) Write down all of the gaps of $S$.
(c) Find $\mathrm{F}(S)$ and $\mathrm{g}(S)$.
(d) Find $\operatorname{Ap}(S ; 5), \operatorname{Ap}(S ; 7)$, and $\operatorname{Ap}(S ; 12)$.
(e) Using $\operatorname{Ap}(S ; 5)$, determine whether $22 \in S$.
(f) Find $Z(25)$ and $Z(5)$.
(g) Find the smallest $n \in S$ with $|\mathrm{Z}(n)| \geq 2$.
(D2) Numerical semigroups with 2 generators. Let $S=\langle a, b\rangle$ with $1<a<b$ and $\operatorname{gcd}(a, b)=1$. Formlate a conjecture for all parts below, then prove your claims.
(a) Find a formula for $\mathrm{F}(S)$ in terms of $a$ and $b$.
(b) Characterize the elements of $\operatorname{Ap}(S ; a)$.
(D3) Factorizations of Apéry set elements. Fix a numerical semigroup $S$.
(a) For $S=\langle 3,7\rangle$, find $\mathrm{Z}(n)$ for every $n \leq 15$. Do the same for $S=\langle 5,7,8\rangle$ and $n \leq 20$. In each, identify which elements lie in $\operatorname{Ap}(S)$.
(b) In the above examples, what distinguishes the factorizations of elements of $\operatorname{Ap}(S)$ from those of the rest of the elements of $S$ ?
(c) Develop a criterion for whether a given element $n \in S$ lies in $\operatorname{Ap}(S)$ based on $\mathbf{Z}(n)$.

Homework problems. You are required to submit all of the problems below.
(H1) Let $S=\langle 5,9,13\rangle$. Find each of the following.
(a) $\mathrm{F}(S)$
(b) $\mathrm{g}(S)$
(c) $\operatorname{Ap}(S ; 5)$
(d) $\mathrm{Z}_{S}(52)$
(H2) The goal of this problem is to prove that every numerical semigroup has a unique generating set that is minimal with respect to containment. Fix a numerical semigroup $S$, define $S^{*}=S \backslash\{0\}$, and let $A=S^{*} \backslash\left(S^{*}+S^{*}\right)$, where $S^{*}+S^{*}=\left\{a+b: a, b \in S^{*}\right\}$.
(a) Prove that $A$ generates $S$.
(b) Prove that every generating set for $S$ has $A$ as a subset.
(c) Prove that $A$ is finite.
(d) Conclude $A$ is the unique generating set for $S$ that is minimal under containment. Hint: why do we need part (c)?
(H3) Fix a numerical semigroup $S$, and let $m=m(S)$ and $\operatorname{Ap}(S ; m)=\left\{0, a_{1}, \ldots, a_{m-1}\right\}$, where $a_{i} \equiv i \bmod m$ for each $i$. Find a formula for $\mathrm{g}(S)$ in terms of $a_{1}, \ldots, a_{m-1}$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Fix $d \geq 1$ and $a \geq 3$ with $\operatorname{gcd}(a, d)=1$, and let $S=\langle a, a+d, a+2 d\rangle$. Find a formula for $\mathrm{F}(S)$ in terms of $a$ and $d$.

