Spring 2019, Math 596: Problem Set 1 Due: Tuesday, February 5th, 2019 Numerical Semigroups

Discussion problems. The problems below should be worked on in class.

- (D1) Warmup. In what follows, let $S = \langle 5, 7 \rangle$. Do the following as a group.
 - (a) Find m(S) and e(S).
 - (b) Write down all of the gaps of S.
 - (c) Find F(S) and g(S).
 - (d) Find $\operatorname{Ap}(S; 5)$, $\operatorname{Ap}(S; 7)$, and $\operatorname{Ap}(S; 12)$.
 - (e) Using Ap(S; 5), determine whether $22 \in S$.
 - (f) Find Z(25) and Z(5).
 - (g) Find the smallest $n \in S$ with $|\mathsf{Z}(n)| \ge 2$.
- (D2) Numerical semigroups with 2 generators. Let $S = \langle a, b \rangle$ with 1 < a < b and gcd(a, b) = 1. Formlate a conjecture for all parts below, then prove your claims.
 - (a) Find a formula for F(S) in terms of a and b.
 - (b) Characterize the elements of Ap(S; a).
- (D3) Factorizations of Apéry set elements. Fix a numerical semigroup S.
 - (a) For $S = \langle 3, 7 \rangle$, find Z(n) for every $n \leq 15$. Do the same for $S = \langle 5, 7, 8 \rangle$ and $n \leq 20$. In each, identify which elements lie in Ap(S).
 - (b) In the above examples, what distinguishes the factorizations of elements of Ap(S) from those of the rest of the elements of S?
 - (c) Develop a criterion for whether a given element $n \in S$ lies in Ap(S) based on Z(n).

Homework problems. You are required to submit all of the problems below.

- (H1) Let $S = \langle 5, 9, 13 \rangle$. Find each of the following.
 - (a) F(S)
 - (b) g(S)
 - (c) $\operatorname{Ap}(S;5)$
 - (d) $Z_S(52)$
- (H2) The goal of this problem is to prove that every numerical semigroup has a unique generating set that is minimal with respect to containment. Fix a numerical semigroup S, define $S^* = S \setminus \{0\}$, and let $A = S^* \setminus (S^* + S^*)$, where $S^* + S^* = \{a + b : a, b \in S^*\}$.
 - (a) Prove that A generates S.
 - (b) Prove that every generating set for S has A as a subset.
 - (c) Prove that A is finite.
 - (d) Conclude A is the unique generating set for S that is minimal under containment. Hint: why do we need part (c)?
- (H3) Fix a numerical semigroup S, and let m = m(S) and $Ap(S; m) = \{0, a_1, \dots, a_{m-1}\}$, where $a_i \equiv i \mod m$ for each i. Find a formula for g(S) in terms of a_1, \dots, a_{m-1} .

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Fix $d \ge 1$ and $a \ge 3$ with gcd(a, d) = 1, and let $S = \langle a, a + d, a + 2d \rangle$. Find a formula for F(S) in terms of a and d.