Spring 2019, Math 596: Problem Set 4
 Due: Tuesday, February 26th, 2019 Polytopes

Discussion problems. The problems below should be worked on in class.
(D1) Warmup. The goal of this problem is to practice drawing "familiar" polytopes.
(a) Compare your drawings from the preliminary problems.
(b) Draw the 3-dimensional simplex, cube, and octohedron. Experiment with different perspectives to find one with maximal clarity. Be sure each member of your group draws at least one!
(c) Draw the 1-skeleton (i.e. just the vertices and edges) of the 3-dimensional simplex, cube, and octohedron in such a way that no edges cross.
(d) Draw the 1-skeleton of the 4-dimensional octohedron. Note: it is provably impossible to do this without edges crossing!
(D2) Associahedra. The goal of this problem is to build and draw a new 3-dimensional polytope.
(a) The associahedron A_{n} is a polytope whose vertices are in bijection with the ways of associating parenthesis when multiplying n elements. The polytope A_{4} (dimension 2) is depicted below. What is the "rule" for when two vertices are connected by an edge?

(b) List all associations of $a b c d e$, e.g. $a(b((c d) e))$ or $(a b)((c d) e)$. There are 14 total.
(c) Draw a graph whose vertices are the 14 expressions you found above, and where an edge is drawn between any two vertices that differ by moving parenthesis exactly one.
(d) Find a way to draw the above graph so that no edges cross.
(e) Using the above graph as a starting place, draw the associahedron A_{5}. Try to make the facets as close to regular polygons (equal edge lengths) as possible. Suggestions:

- Take your time and be methodical in your drawing. Patience is greatly rewarded.
- It may take several revisions to find a "satisfying" drawing, so don't be afraid to experiment and try some different things!
- There is no single "correct" answer here. Unlike most "common" shapes like the cube or octohedron, many different drawings are possible.

