Spring 2019, Math 596: Problem Set 5
 Due: Tuesday, March 5th, 2019
 Polytopes

Discussion problems. The problems below should be worked on in class.
(D1) Polar duals. The goal of this problem is to practice constructing dual polytopes.
(a) Consider the polytope

$$
P=\operatorname{conv}\{(-1,0),(0,-1),(1,-1),(1,1),(-1,1)\}
$$

(i) Find a matrix A so the system of inequalities $A x \leq \overrightarrow{1}$ completely describe $x \in P$ (this is the H-description of P).
(ii) Find the V-description of P^{Δ} (the polar dual of P).
(iii) Find the H-descriptin of P^{Δ}, use it to find the V-description of P. Does this match with the original definition of P ?
(iv) Write the face lattice of P and P^{Δ} side by side.
(b) Consider the (slightly modified) simplex

$$
S=\operatorname{conv}\{(-1,-1,-1),(1,0,0),(0,1,0),(0,0,1)\} \subset \mathbb{R}^{3}
$$

Find S^{Δ}, and use it to show S is self-dual (i.e., S has the same face lattice as S^{Δ}).
(c) Show that a pyramid with square base is self-dual.
(D2) Proving things about polytopes. The goal of this problem is to get a feeling for how to write rigorous proofs involving polytopes.
(a) Draw the cubes $C_{2} \subset \mathbb{R}^{2}$ and $C_{3} \subset \mathbb{R}^{3}$. Label the vertices in each drawing.
(b) Formulate a conjecture on when two vertices v_{1} and v_{2} of the d-dimensional cube C_{d} are connected by an edge.
The goal of the remainder of this problem is to prove your conjecture for C_{3}.
(c) For each edge e connecting vertices v_{1} and v_{2} of C_{3}, find an equation of a hyperplane H (which should have the form $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=b$ for some $a_{1}, a_{2}, a_{3}, b \in \mathbb{R}$) so that (i) the only vertices H contains are v_{1} and v_{2}, and (ii) the remaining vertices of C_{3} lie on the same side of H. This ensures H is "just touching the polytope" at e.
Hint: be systematic, and use symmetry to your advantage!
(d) For two points $x, y \in \mathbb{R}^{d}$, let

$$
\overline{x y}=\left\{t x+(1-t) x^{\prime}: 0 \leq t \leq 1\right\}
$$

denote the line segment connecting x and y. For each pair of vertices v_{1} and v_{2} not connected by an edge, locate two points w_{1} and w_{2} in C_{3} not in $\overline{v_{1} v_{2}}$ for which $\overline{w_{1} w_{2}} \cap \overline{v_{1} v_{2}}$ is nonempty.
Hint: it is possible to choose each w_{1} and w_{2} to also be vertices of C_{3} (this is special to the cube and is not true in general).
(e) Briefly explain why the previous part prove $\overline{v_{1} v_{2}}$ is not an edge.
(f) If you are feeling adventurous, generalize your constructions above to characterize (with proof) the edges of C_{d} for $d \geq 3$.

Homework problems. You are required to submit all of the problems below. For those with choices, you may submit additional parts if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional problems.
(H1) Consider the following polytope.

$$
P=\operatorname{conv}\{(1,0,0),(0,1,0),(-1,-1,0),(0,0,1),(0,0,-1)\}
$$

(a) Find a matrix A so that the system of inequalities $A x \leq \overrightarrow{1}$ completely describe $x \in P$.
(b) Write down the V-description and H-description of P^{Δ}.
(c) Draw (as best you can) P and P^{Δ}.
(d) Draw the face lattice of P and the face lattice of P^{Δ}.

Note: you are not required to prove your descriptions and face lattices are correct.
(H2) Complete at least one of the following.
(a) Prove (using hyperplanes) that any two vertices of a d-simplex share an edge.
(b) Characterize (with proof!) all possible f-vectors of 2-dimensional polytopes.
(c) Locate a family of 3-dimensional polytopes that demonstrates \#facets - \#vertices can be arbitrarily large (a few drawing and/or a brief informal argument is sufficient). Can the same be said for \#vertices - \#facets?

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) The permutohedron is the polytope P_{n} whose vertices consist of all possible orderings of the coordinates of $(1,2, \ldots, n)$. For example,

$$
P_{3}=\{(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)\}
$$

Prove that $\operatorname{dim} P_{n}=n-1$.
Hint: to prove $\operatorname{dim} P_{n} \leq n-1$, find a hyperplanes that contain P_{n}. To prove $\operatorname{dim} P_{n} \geq n-1$, locate $n-1$ linearly independent vectors of the form $v_{2}-v_{1}$ for vertices v_{1}, v_{2} of P_{n}.
(C2) Classify the edges of the permutohedron P_{n} from Problem (C1).

