Spring 2020, Math 621: Week 1 Problem Set Due: Thursday, February 6th, 2020
 Numerical and Affine Semigroups

Discussion problems. The problems below should be worked on in class.
(D1) Minimal generating sets. Fix a subsemigroup $S \subset\left(\mathbb{Z}_{\geq 0}^{d},+\right)$. The goal of this problem is to prove that S has a unique generating set that is minimal with respect to containment.
(a) Determine the unique minimal generating set of each of the following semigroups.
(i) $S=\langle 6,9,15,20,26,42,55\rangle$
(ii) $S=\langle 11,15,19, \ldots, 111\rangle$
(iii) $S=\langle(0,2),(1,2),(2,0),(2,2),(2,3),(3,2),(3,3)\rangle$
(iv) $S=\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: a \leq 3 b\right.$ and $\left.b \leq 4 a\right\}$
(v) $S=\langle G\rangle$, where $G=\{(a, b): a \equiv 1 \bmod 3$ and $b \equiv 2 \bmod 3\}$.
(b) Let $S^{*}=S \backslash\{0\}$. Compare the sets S and $S^{*}+S^{*}$ for $S=\langle 6,9,20\rangle$.
(c) Let $\mathcal{A}(S)=S^{*} \backslash\left(S^{*}+S^{*}\right)$. Prove that $S=\langle\mathcal{A}(S)\rangle$.
(d) Explain briefly why any generating set for S must contain $\mathcal{A}(S)$.
(e) Prove that if $d=1$, then the elements of $\mathcal{A}(S)$ must be distinct modulo $m=\min \mathcal{A}(S)$. Conclude that $\mathcal{A}(S)$ must be finite in this case.
(f) Does the previous part necessarily hold if $d=2$?
(D2) Geometry of semigroups. The goal of this problem is to explore several geometric theorems.
(a) It turns out any finitely generated subsemigroup $S=\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle \subset \mathbb{Z}^{r}$ is isomorphic to some subsemigroup of $\mathbb{Z}_{\geq 0}^{d}$, where $d=\operatorname{dim}_{\mathbb{R}} \operatorname{span}_{\mathbb{R}}(S)$ (the affine dimension of S). For each of the following, compute d, and locate an isomorphic subsemigroup of $\mathbb{Z}_{\geq 0}^{d}$.
(i) $S=\langle(9,6),(15,10),(21,14)\rangle$
(ii) $S=\langle(0,2),(2,1),(-1,2)\rangle$
(iii) $S=\langle(2,0,2),(2,3,5),(4,3,7)\rangle$
(b) Gordan's Lemma: given a finite list of linear inequalities with rational coefficients, the subset of \mathbb{Z}^{d} satisfying them is a finitely generated semigroup.
Determine the (finite) minimal generating set of each of the following.
(i) $S=\left\{(a, b) \in \mathbb{Z}^{2}: 0 \leq 3 a \leq 2 b\right\}$
(ii) $S=\left\{v \in \mathbb{Z}^{3}: A v \leq 0\right\}$, where

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
2 & -3 & 0 \\
0 & 1 & -2
\end{array}\right]
$$

and each row of $A v \leq 0$ is interpreted as an inequality on v_{1}, v_{2}, v_{3}.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Fix a commutative semigroup $(S,+)$. A relation \sim on S is a congruence if (i) \sim is an equivalence relation, and (ii) \sim is closed under translation (i.e., $a \sim b$ implies $a+c \sim b+c$ for all $a, b, c \in S$).
(a) Given a (possibly infinite) collection of congruences \sim_{i}, define the common refinement $\sim=\bigcap_{i} \sim_{i}$ by $a \sim b$ whenever $a \sim_{i} b$ for all i. Prove that \sim is a congruence.
(b) Prove that if \sim is a congruence on S, then the set S / \sim of equivalence classes of \sim is a semigroup under the operation $[a]+[b]=[a+b]$.
(c) Given a semigroup homomorphism $\varphi: S \rightarrow T$, the kernel of φ is the relation $\sim=\operatorname{ker} \varphi$ on S setting $a \sim b$ whenever $\varphi(a)=\varphi(b)$. Prove that $\operatorname{ker} \varphi$ is a congruence on S.
(d) State and prove a version of the first isomorphism theorem for semigroups.
(H2) Fix a field \mathbb{k}, and let $R=\mathbb{k}\left[x_{1}, \ldots, x_{k}\right]$. In what follows, for $a \in \mathbb{Z}_{\geq 0}^{k}$, we use the shorthand

$$
x^{a}=x_{1}^{a_{1}} \cdots x_{k}^{a_{k}}
$$

A (unital) binomial is a polynomial of the form $x^{a}-x^{b} \in R$ for some $a, b \in \mathbb{Z}_{\geq 0}^{k}$.
(a) Fix an ideal $I \subset R$. Define a relation \sim_{I} on $\mathbb{Z}_{\geq 0}^{k}$ by

$$
a \sim_{I} b \quad \text { whenever } \quad x^{a}-x^{b} \in I
$$

for $a, b \in \mathbb{Z}_{\geq 0}^{k}$. Prove that \sim_{I} is a congruence on $\mathbb{Z}_{\geq 0}^{k}$.
(b) Fix $c_{1}, \ldots, c_{r}, d_{1}, \ldots, d_{r} \in \mathbb{Z}_{\geq 0}^{k}$, and let $I=\left\langle x^{c_{1}}-x^{d_{1}}, \ldots, x^{c_{r}}-x^{d_{r}}\right\rangle \subset \mathbb{k}\left[x_{1}, \ldots, x_{k}\right]$ (we call I a binomial ideal). Prove that the smallest congruence \sim on $\mathbb{Z}_{\geq 0}^{k}$ satisfying $c_{i} \sim d_{i}$ for each i is $\sim=\sim_{I}$.
Note: "smallest congruence" refers to the congruence with the smallest collection of relations. In particular, the smallest congruence satisfying some property (if it exists) equals the common refinement of all congruences satisfying that property.
(H3) Determine whether each of the following statements is true or false. Prove your assertions.
(a) For any $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{Z}_{\geq 0}^{d}$ with $d \geq 2$, the set $\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle \backslash\left\langle\alpha_{1}, \ldots, \alpha_{k-1}\right\rangle$ is infinite.
(b) Given any congruence \sim on $\mathbb{Z}_{\geq 0}^{k}$, the semigroup $S=\mathbb{Z}_{\geq 0}^{k} / \sim$ is cancellative, that is, $a+c=b+c$ implies $a=b$ for all $a, b, c \in S$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Locate a commutative, cancellative semigroup S such that (i) S is finitely generated, (ii) $0 \in S$ is the only element of S with an inverse, and (iii) S is not isomorphic to any affine semigroup.

